Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509454

RESUMO

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

2.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840365

RESUMO

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Assuntos
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética
4.
Nat Commun ; 14(1): 4674, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542048

RESUMO

Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Etilenos/metabolismo , RNA/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Materials (Basel) ; 16(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048895

RESUMO

The viscous fingering phenomenon often occurs when a low-viscosity fluid displaces a high-viscosity fluid in a homogeneous porous media, which is an undesirable displacement process in many engineering applications. The influence of wetting gradient on this process has been studied over a wide range of capillary numbers (7.5 × 10-6 to 1.8 × 10-4), viscosity ratios (0.0025 to 0.04), and porosities (0.48 to 0.68), employing the lattice Boltzmann method. Our results demonstrate that the flow front stability can be improved by the gradual increase in wettability of the porous media. When the capillary number is less than 3.5 × 10-5, the viscous fingering can be successfully suppressed and the transition from unstable to stable displacement can be achieved by the wetting gradient. Moreover, under the conditions of high viscosity ratio (M > 0.01) and large porosity (Φ > 0.58), wetting gradient improves the stability of the flow front more significantly.

6.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066995

RESUMO

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Assuntos
Glycine max , Sementes , Glycine max/metabolismo , Fenótipo , Sementes/genética , Sementes/metabolismo , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo
7.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866859

RESUMO

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Assuntos
Secas , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Cell Environ ; 46(4): 1060-1074, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36397123

RESUMO

Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.


Assuntos
Arabidopsis , Oryza , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Oryza/genética , Cotilédone/metabolismo , Etilenos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Materials (Basel) ; 15(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500064

RESUMO

Good solid-liquid mixing homogeneity and liquid level stability are necessary conditions for the preparation of high-quality composite materials. In this study, two rotor-stator agitators were utilized, including the cross-structure rotor-stator (CSRS) agitator and the half-cross structure rotor-stator (HCSRS) agitator. The performances of the two types of rotor-stator agitators and the conventional A200 (an axial-flow agitator) and Rushton (a radial-flow agitator) in the solid-liquid mixing operations were compared through CFD modeling, including the homogeneity, power consumption and liquid level stability. The Eulerian-Eulerian multi-fluid model coupling with the RNG k-ε turbulence model were used to simulate the granular flow and the turbulence effects. When the optimum solid-liquid mixing homogeneity was achieved in both conventional agitators, further increasing stirring speed would worsen the homogeneity significantly, while the two rotor-stator agitators still achieving good mixing homogeneity at the stirring speed of 600 rpm. The CSRS agitator attained the minimum standard deviation of particle concentration σ of 0.15, which was 42% smaller than that achieved by the A200 agitators. Moreover, the average liquid level velocity corresponding to the minimum σ obtained by the CSRS agitator was 0.31 m/s, which was less than half of those of the other three mixers.

10.
Front Plant Sci ; 13: 1057993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582645

RESUMO

Background: Both melatonin and indole-3-acetic acid (IAA) are derived from tryptophan. And the most interesting and unsolved puzzle in melatonin research is that what is the relationship between melatonin and auxin? Methods: In this study, we performed transcriptome analysis with a time series method to disclose the connection of the two metabolites in soybean. Results: Our results reveal that melatonin and IAA treatments cause substantial overlaps in gene expression changes. Common genes of melatonin and IAA treatments could be sorted into clusters with very similar expression tendency. A KEGG assay showed that exogenous applied melatonin enriched differentially expressed genes in auxin biosynthesis and signaling pathways. For details, melatonin up-regulates several YUCCA genes which participate in auxin biosynthesis; melatonin also enhances expression levels of auxin receptor coding genes, such as TIR1, AFB3 and AFB5; dozens of genes involved in auxin transport, such as AUXI and PIN, are regulated by melatonin similarly as by auxin; auxin-responsive genes, such as IAA, ARF, GH3 and SAUR-like genes, intensively respond to melatonin as well as to auxin. A DR5 promoter mediated GUS staining assay showed that low concentration of melatonin could induce auxin biosynthesis in a dosage manner, whereas high concentration of melatonin would eliminate such effect. At last, gene ontology (GO) analysis suggests that melatonin treatment has similar characteristics as auxin treatment in many processes. However, the two molecules still keep their own features respectively. For example, melatonin takes part in stress responses, while IAA treatment enriches the GO terms that related to cell growth. Conclusion: Taken together, exogenous applied melatonin, if not exceeds the appropriate concentration, could promote auxin responses range from biosynthesis to signaling transduction. Thus, our research is a key part to explain the auxin-like roles of melatonin in regulating plant growth.

11.
Plant Cell ; 34(11): 4366-4387, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35972379

RESUMO

Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.


Assuntos
Etilenos , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Triptofano Transaminase , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Triptofano Transaminase/genética , Triptofano Transaminase/metabolismo
12.
Plant Biotechnol J ; 19(11): 2362-2379, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34265872

RESUMO

Soybean is an important crop worldwide, but its production is severely affected by salt stress. Understanding the regulatory mechanism of salt response is crucial for improving the salt tolerance of soybean. Here, we reveal a role for nuclear factor Y subunit GmNFYA in salt tolerance of soybean likely through the regulation of histone acetylation. GmNFYA is induced by salt stress. Overexpression of GmNFYA significantly enhances salt tolerance in stable transgenic soybean plants by inducing salt-responsive genes. Analysis in soybean plants with transgenic hairy roots also supports the conclusion. GmNFYA interacts with GmFVE, which functions with putative histone deacetylase GmHDA13 in a complex for transcriptional repression possibly by reducing H3K9 acetylation at target loci. Under salt stress, GmNFYA likely accumulates and competes with GmHDA13 for interaction with GmFVE, leading to the derepression and maintenance of histone acetylation for activation of salt-responsive genes and finally conferring salt tolerance in soybean plants. In addition, a haplotype I GmNFYA promoter is identified with the highest self-activated promoter activity and may be selected during future breeding for salt-tolerant cultivars. Our study uncovers the epigenetic regulatory mechanism of GmNFYA in salt-stress response, and all the factors/elements identified may be potential targets for genetic manipulation of salt tolerance in soybean and other crops.


Assuntos
Glycine max , Tolerância ao Sal , Fator de Ligação a CCAAT , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Glycine max/genética , Glycine max/metabolismo
13.
New Phytol ; 231(2): 661-678, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864683

RESUMO

Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
14.
J Integr Plant Biol ; 63(1): 102-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33095478

RESUMO

Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.


Assuntos
Arabidopsis/genética , Etilenos/metabolismo , Oryza/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Plant Cell ; 32(5): 1626-1643, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184349

RESUMO

Ethylene plays important roles in plant growth and development, but the regulation of ethylene signaling is largely unclear, especially in crops such as rice (Oryza sativa). Here, by analysis of the ethylene-insensitive mutant mao huzi 11 (mhz11), we identified the GDSL lipase MHZ11, which modulates ethylene signaling in rice roots. MHZ11 localized to the endoplasmic reticulum membrane and has acyl-hydrolyzing activity. This activity affects the homeostasis of sterols in rice roots and is required for root ethylene response. MHZ11 overexpression caused constitutive ethylene response in roots. Genetically, MHZ11 acts with the ethylene receptor ETHYLENE RESPONSE SENSOR2 (OsERS2) upstream of CONSTITUTIVE TRIPLE RESPONSE2 (OsCTR2) and ETHYLENE INSENSITIVE2 (OsEIN2). The mhz11 mutant maintains more OsCTR2 in the phosphorylated form whereas MHZ11 overexpression promotes ethylene-mediated inhibition of OsCTR2 phosphorylation. MHZ11 colocalized with the ethylene receptor OsERS2, and its effect on OsCTR2 phosphorylation requires ethylene perception and initiation of ethylene signaling. The mhz11 mutant overaccumulated sterols and blocking sterol biosynthesis partially rescued the mhz11 ethylene response, likely by reducing receptor-OsCTR2 interaction and OsCTR2 phosphorylation. We propose that MHZ11 reduces sterol levels to impair receptor-OsCTR2 interactions and OsCTR2 phosphorylation for triggering ethylene signaling. Our study reveals a mechanism by which MHZ11 participates in ethylene signaling for regulation of root growth in rice.


Assuntos
Etilenos/metabolismo , Lipase/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Genes de Plantas , Hidrólise , Metabolismo dos Lipídeos , Mutação/genética , Oryza/genética , Fenótipo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas
16.
Nat Commun ; 11(1): 518, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980616

RESUMO

Ethylene plays essential roles during adaptive responses to water-saturating environments in rice, but knowledge of its signaling mechanism remains limited. Here, through an analysis of a rice ethylene-response mutant mhz1, we show that MHZ1 positively modulates root ethylene responses. MHZ1 encodes the rice histidine kinase OsHK1. MHZ1/OsHK1 is autophosphorylated at a conserved histidine residue and can transfer the phosphoryl signal to the response regulator OsRR21 via the phosphotransfer proteins OsAHP1/2. This phosphorelay pathway is required for root ethylene responses. Ethylene receptor OsERS2, via its GAF domain, physically interacts with MHZ1/OsHK1 and inhibits its kinase activity. Genetic analyses suggest that MHZ1/OsHK1 acts at the level of ethylene perception and works together with the OsEIN2-mediated pathway to regulate root growth. Our results suggest that MHZ1/OsHK1 mediates the ethylene response partially independently of OsEIN2, and is directly inhibited by ethylene receptors, thus revealing mechanistic details of ethylene signaling for root growth regulation.


Assuntos
Etilenos/metabolismo , Histidina Quinase/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação/genética , Oryza/genética , Fenótipo , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transdução de Sinais
17.
New Phytol ; 225(6): 2526-2541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31675430

RESUMO

Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Etilenos , Doenças das Plantas , Proteínas de Plantas/genética , Triticum/genética
18.
Langmuir ; 35(49): 16201-16209, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31738548

RESUMO

The effectiveness of coalescence-induced jumping of microdroplets on superhydrophobic surfaces is critical to a wide range of applications such as self-cleaning surfaces, anti-icing/frosting, water harvesting, phase-change heat transfer, and hotspot cooling. Introducing textures on the surfaces can readily enlarge the effective contact angle, while an overlarge texture spacing may unfavorably lead to droplet penetration into the gaps in droplet coalescence processes. To clarify the effect of surface textures on the droplet jumping dynamics, we simulated the coalescence of droplets on textured superhydrophobic surfaces with various surface wettability and texture spacings and theoretically derived the critical conditions of jumping and the optimal condition of maximum jumping velocity. The results show that the nonmonotonic emergence of "nonjumping"-"jumping"-"nonjumping" with decreasing solid fraction is synergistically controlled by the surface adhesion and the effective impinging pressure. At a large solid fraction, the transition from "nonjumping" to "jumping" is caused by the reduction of the dimensionless surface adhesion energy below a critical value, which is determined to be 0.035 for Oh = 0.02 and 0.01 for Oh = 0.12. At a small solid fraction, the transition from "jumping" to "nonjumping" is dominated by the reduction of the dimensionless effective impinging pressure, the critical value of which is identified to be 0.14 and is independent of Oh. Moreover, jumping velocity maximizes when wetting critically transits from the Cassie-Baxter (CB) state to the partial-wetting state, and a penetration index is proposed from the wetting theory to predict such transition, which shows good agreement with both present simulations and previous experiments. The present findings are helpful for the design of superhydrophobic surfaces that pursue robust and efficient jumping of droplets.

19.
Front Plant Sci ; 10: 1088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552078

RESUMO

Acireductone dioxygenase (ARD) is a metal-binding metalloenzyme and involved in the methionine salvage pathway. In rice, OsARD1 binds Fe2+ and catalyzes the formation of 2-keto-4-methylthiobutyrate (KMTB) to produce methionine, which is an initial substrate in ethylene synthesis pathway. Here, we report that overexpression of OsARD1 elevates the endogenous ethylene release rate, enhances the tolerance to submergence stress, and reduces the sensitivity to drought, salt, and osmotic stresses in rice. OsARD1 is strongly induced by submergence, drought, salinity, PEG6000, and mechanical damage stresses and exhibits high expression level in senescent leaves. Transgenic plants overexpressing OsARD1 (OsARD1-OE) display fast elongation growth to escape submergence stress. The ethylene content is significantly maximized in OsARD1-OE plants compared with the wide type. OsARD1-OE plants display increased shoot elongation and inhibition of root elongation under the submergence stress and grow in dark due to increase of ethylene. The elongation of coleoptile under anaerobic germination is also significantly promoted in OsARD1-OE lines due to the increase of ethylene content. The sensitivity to drought and salt stresses is reduced in OsARD1-OE transgenic lines. Water holding capacity is enhanced, and the stomata and trichomes on leaves increase in OsARD1-OE lines. Drought and salt tolerance and ethylene synthesis-related genes are upregulated in OsARD1-OE plants. Subcellular localization shows that OsARD1 displays strong localization signal in cell nucleus, suggesting OsARD1 may interact with the transcription factors. Taken together, the results provide the understanding of the function of OsARD1 in ethylene synthesis and abiotic stress response in rice.

20.
Front Plant Sci ; 8: 1676, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018471

RESUMO

Gaseous hormone ethylene has diverse effects in various plant processes. These processes include seed germination, plant growth, senescence, fruit ripening, biotic and abiotic stresses responses, and many other aspects. The biosynthesis and signaling of ethylene have been extensively studied in model Arabidopsis in the past two decades. However, knowledge about the ethylene signaling mechanism in crops and roles of ethylene in regulation of crop agronomic traits are still limited. Our recent findings demonstrate that rice possesses both conserved and diverged mechanism for ethylene signaling compared with Arabidopsis. Here, we mainly focused on the recent advances in ethylene regulation of important agronomic traits. Of special emphasis is its impact on rice growth, flowering, grain filling, and grain size control. Similarly, the influence of ethylene on other relevant crops will be compared. Additionally, interactions of ethylene with other hormones will also be discussed in terms of crop growth and development. Increasing insights into the roles and mechanisms of ethylene in regulating agronomic traits will contribute to improvement of crop production through precise manipulation of ethylene actions in crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA