Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(1): e0299622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688674

RESUMO

Monoclonal and polyclonal antibodies are mostly used for the development of traditional enzyme-linked immunosorbent assays (ELISAs), but the use of certain conventional antibodies may be limited by their low yield, the difficulty of their isolation, and their high cost. Heavy-chain antibodies derived from camelids with naturally missing light chains can overcome these deficiencies and are an excellent alternative to conventional antibodies. In this study, a nanobody (Nb)-AviTag fusion protein was constructed, and the feasibility of its use as a high-sensitivity probe in a blocking ELISA (bELISA) for classical swine fever virus (CSFV) was investigated. The CSFV E2 recombinant protein expressed by the CHO expression system exhibited good reactogenicity and immunogenicity and induced the production of high CSFV antibody levels in rabbits. Three different clones of Nbs were successfully isolated using a phage display system in alpaca, and an Nb1-AviTag fusion protein was successfully expressed using an Escherichia coli expression system. The purified Nb1-AviTag fusion protein was then biotinylated in vitro to obtain Nb1-biotin. A novel bELISA was developed for the detection of CSFV antibodies in clinical serum using Nb1-biotin as a probe. The cutoff value of bELISA was 32.18%, the sensitivity of bELISA was higher than that of the bELISA kit with IDEXX antibody, and the coincidence rate was 94.7%. A rapid, low-cost, highly sensitive and highly specific CSFV E2 antibody-based bELISA method was successfully established and can be used for the serological evaluation of CSFV E2 subunit vaccines and the ELISA-based diagnosis of CSFV infection. IMPORTANCE Currently, the epidemic situation of classical swine fever (CSF) is sporadic, and cases of atypical swine fever are on the rise in China. Therefore, it is necessary to accurately eliminate suspected cases by using highly sensitive and specific diagnostic techniques. In our study, a rapid, low-cost, highly sensitivity, highly reliable and reproducible, and highly specific classical swine fever virus (CSFV) E2 antibody-based blocking ELISA method was successfully established by using the phage display system and the Nb1-AviTag fusion expression platform. It provides a new technique for serological evaluation of CSFV vaccines and ELISA-based diagnosis of CSFV infection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Animais , Suínos , Coelhos , Biotina , Anticorpos Antivirais , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/prevenção & controle , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes/genética
2.
Front Microbiol ; 13: 1054651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406388

RESUMO

Adenovirus vector vaccines have been the mainstream research direction of CSF vaccines, due to the replication deficiency of adenovirus vectors, achieving double effects with the safety of inactivated vaccines and the efficacy of live vaccines. Therefore, the E0 and E2 genes were expressed by an adenovirus vector, a recombinant adenovirus E0-E2 (rAd-E0-E2) vaccine was constructed, and the minimum immunization dose and immune duration period were determined in this study. Forty healthy piglets were randomly divided into 8 groups (n = 5). Groups 1 ~ 5 were used to determine the minimum immunization dose, and 5 groups were inoculated with rAd-E0-E2 at different immune doses. Serum was collected at 7 d and 14 d after immunization to detect CSFV antibodies by ELISA, and piglets were challenged at 7 d post immunization. Groups 6 ~ 8 were immunized with 1 dose of rAd-E0-E2, the CSFV live attenuated vaccine C strain and saline to identify the immune duration period. Serum was collected at different time points after immunization, CSFV antibodies were detected by ELISA, and piglets were challenged at 8 months post immunization. Meanwhile, temperature, clinical symptoms and pathology were observed. The results of groups 1 ~ 5 showed that 1 piglet was protected after challenge, and 4 piglets exhibited high fever retention, typical CSFV symptoms and tissue lesions in the 1/50 dose group, whereas no clinical symptoms were observed in the 1/10 dose, 1/5 dose or 1 dose groups with 5/5 protection after challenge. The minimum dose was determined as 1/10 dose. The results of groups 6 ~ 8 showed that all piglets survived after challenge, but the antibody level of the rAd-E0-E2 strain was higher than that of the C strain at 8 months post immunization, and all piglets in the negative group developed the disease process after challenge. Overall, the minimum immunization dose of rAd-E0-E2 was 1/10 dose (3.16 × 106.0 IFU) and the minimum immune dose was determined to be 1 dose (3.16 × 107.0 IFU) to achieve the expected effects. The immune duration period of piglets immunized with 1 dose of rAd-E0-E2 was at least 8 months.

3.
Front Cell Infect Microbiol ; 12: 1024690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225232

RESUMO

Humans are exposed to Toxoplasma gondii infection as pet cats gradually become family members and represent an increasing public health risk worldwide. Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this study, real-time fluorescence quantitative loop-mediated isothermal amplification (qLAMP) and visual LAMP detection technologies were established to conduct tests of T. gondii based on the membrane DNA extraction method, and the optimal detection mix was determined by adding the protective reagent trehalose and screening the concentrations of Mg2+ and dNTPs. Paraffin and lyophilization were used to reduce and even remove aerosol pollution, constructing a detailed anti-contamination protocol. Based on the positive standard plasmid DNA, the LODs of qLAMP and visual LAMP were 92 copies/µL and 92 copies/µL, and the standard curve of qLAMP was Y=2.9503X+20.8992 with R2 = 0.99. The applicability of the qLAMP and visual LAMP assays in disease diagnosis was assessed by evaluating 200 clinical cat faeces samples. The assays showed good diagnostic consistency, with kappa values of 1.0 and 0.99 compared with TaqMan qPCR, respectively. Compared with TaqMan qPCR, the diagnostic specificity/sensitivity of qLAMP and visual LAMP were 100%/100% and 100%/80%, respectively. The qLAMP and visual LAMP assays reported here are rapid and simple tests without extensive sample preparation and have a short turnaround time within 60 min, making them suitable for point-of-care testing.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Gatos , DNA de Protozoário/análise , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Parafina , Sensibilidade e Especificidade , Toxoplasma/genética , Toxoplasmose/diagnóstico , Trealose
4.
Front Microbiol ; 13: 965997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992660

RESUMO

Pseudorabies (PR), which is caused by the pseudorabies virus (PRV), is a severe infectious disease that causes abortions in adult sows and fatal encephalitis in piglets; the disease can occur in pigs of all ages and other mammals, which can lead to significant economic loss around the worldwide. The new PRV variant invalidated the available commercial attenuated and inactivated vaccines. Consequently, subunit vaccines have been suggested as novel strategies for PR control, while they are usually formulated with adjuvants due to their lower immunogenicity. We aimed to select a safe and efficient adjuvant for subunit vaccines for PR. In our study, glycoprotein B (gB) and glycoprotein D (gD) were expressed based on a baculovirus expression system, and granulocyte-macrophage colony-stimulating factor (GM-CSF) was expressed using an Escherichia coli (E. coli) expression system; subsequently, a gB + gD subunit vaccine adjuvanted by GM-CSF was constructed. A rabbit model infected with a PRV SD-2017 strain was established, the TCID50 and LD50 were measured, and the typical clinical symptoms were observed. After a lethal challenge of 5 LD50 with a PRV SD-2017 strain, the rabbits exhibited typical clinical symptoms, including itching and high temperature, and histopathology revealed severe inflammation in the brain, which is the dominant target organ of PRV. Rabbits immunized with the gB + gD + GM-CSF subunit vaccines produced higher levels of antibodies than those immunized with gB + gD + ISA 201, which was adjuvanted with a frequently used oil adjuvant. The survival rate of rabbits vaccinated with gB + gD + GM-CSF was 100%, which was superior to that of rabbits vaccinated with gB + gD + ISA 201 (80%), inactivated PRV + GM-CSF (60%) and commercial inactivated vaccine (60%) after challenge with PRV SD-2017. These data suggested that the gB + gD + GM-CSF-based subunit vaccine had good protective efficacy against the PRV SD-2017 strain in rabbits and that GM-CSF could be developed as a candidate adjuvant for use in a vaccine regimen to prevent and even eradicate PR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA