Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571058

RESUMO

To improve the toughness and heat resistance of polylactic acid (PLA), polybutylene succinate (PBS) was sufficiently blended with PLA as the base matrix, and the glass fiber (GF) that was modified with 3-aminopropyltriethoxysilane (KF-GF) was added as the reinforcement. The results demonstrated a noteworthy boost in both mechanical and heat resistance properties when employing KH-GF, in comparison to pristine GF. When the content of KH-GF reached 20%, the tensile, flexural, and IZOD impact strength of the composites were 65.53 MPa, 83.43 MPa, and 7.45 kJ/m2, respectively, which were improved by 123%, 107%, and 189% compared to the base matrix, respectively. This enhancement was primarily attributed to the stronger interfacial adhesion between KH-GF and the PLA/PBS matrix. Furthermore, the Vicat softening temperature of the composites reached 128.7 °C, which was a result of increased crystallinity. In summary, the incorporation of KH-GF into PLA/PBS composites resulted in notable enhancements in their mechanical properties, crystallinity, and thermal characteristics. The high performance KH-GF-reinforced PLA/PBS composite showed a broad application potential in the field of biodegradable packaging, biodegradable textiles, and biodegradable plastic bags.

2.
Polymers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015493

RESUMO

In this paper, to enhance the toughness and heat resistance properties of polylactic acid (PLA)/polybutylene succinate (PBS) composites, the PLA/PBS matrix was modified by different glass fiber (GF), GF/SiO2, and GF/(Polyaluminium chloride) PAC fillers. Additionally, the effect of filler type, filler content, components interaction and composite structure on the mechanical and thermal properties of the PLA/PBS composites was researched. The results showed that the addition of GF, GF/SiO2 and GF/PAC make the PLA/PBS composites appear significantly higher mechanical properties compared with the pristine PLA/PBS composite. Among the different inorganic fillers, the 10%GF/1%SiO2 fillers showed excellent strengthening, toughening and heat resistant effects. Compared with the pristine PLA/PBS matrix, the tensile strength, elastic modulus, flexural strength, flexural modulus and Izod impact strength improved by 36.28%, 70.74%, 67.95%, 66.61% and 135.68%, respectively. Considering the above, when the weight loss rate was 50%, the thermal decomposition temperature of the 10%GF/1%SiO2 modified PLA/PBS composites was the highest 412.83 °C and its Vicat softening point was up to 116.8 °C. In a word, the 10%GF/1%SiO2 reinforced PLA/PBS composites exhibit excellent mechanical and thermal properties, which broadens the application of biodegradable materials in specific scenarios.

3.
Sensors (Basel) ; 19(7)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935114

RESUMO

A highly sensitive immunoassay of biomarkers has been achieved using 4-mercaptobenzoic acid-labeled Ag@Au core⁻shell porous nanocage tags and α-fetoprotein immuno-sensing chips. The Ag@Au porous nanocages were uniquely synthesized by using an Ag core as a self-sacrificial template and reducing agent, where the slow reaction process led to the formation of a porous Au layer. The size of the remaining Ag core and surface roughness of the Au shell were controlled by adjusting the chloroauric acid concentration. The porous cage exhibited excellent surface-enhanced Raman spectroscopy (SERS) activity, presumably due to a synergetic interaction between newly generated hot spots in the rough Au shell and the retained SERS activity of the Ag core. Using α-fetoprotein as a model analyte for immunoassay, the SERS signal had a wide linear range of 0.20 ng mL-1 to 500.0 ng mL-1 with a detection limit of 0.12 ng mL-1. Without the need of further signal amplification, the as-prepared Ag@Au bimetallic nanocages can be directly used for highly sensitive SERS assays of other biomarkers in biomedical research, diagnostics, etc.


Assuntos
Imunoensaio/métodos , Nanoestruturas/química , Análise Espectral Raman , alfa-Fetoproteínas/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Ouro/química , Humanos , Limite de Detecção , Porosidade , Prata/química , alfa-Fetoproteínas/imunologia
4.
J Am Chem Soc ; 137(34): 11004-10, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26270392

RESUMO

A series of multi-heterostructured metal chalcogenides (CdS-Te, NiS/CdS-Te, and MoS2/CdS-Te) with a surprising shish-kebab-like structure have been synthesized via a one-step microwave-assisted pyrolysis of dithiocarbamate precursors in ethylene glycol. Subsequently, CdS-Te composites were exploited as a self-sacrificial template to craft various CdS-Te@(Pt, Pd) multi-heterostructures. Highly uniform dispersion and intimate interactions between CdS and multicomponent cocatalysts, together with improved separation of photogenerated carriers due to the presence of Te nanotubes (NTs) and trace CdTe, enable CdS-based heterostructured photocatalysts to exhibit greatly enhanced efficiency and stability in the photocatalytic production of H2. Thorough morphological characterizations revealed that the growth of metal sulfide/Te heterostructures originates from the growth of Te tubes, which is likely governed by diffusion-limited depletion of the Te precursor and the dissolution-crystallization process of Te seeds followed by the formation of metal sulfide kebabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA