Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862520

RESUMO

Ultra-fast high-voltage switches (UFHVSs) are a core component of time-of-flight mass spectrometers for realizing high accuracy ion acceleration, deceleration, and temporal focusing. The desirable features of high performance UFHVSs include a large range of adjustability of pulse width, a high maximum output amplitude, and minute rising and falling times. Besides the simplicity of the driver circuit, the total cost of the whole device is also critical to its practical applications. In this work, we present a low-cost and easy-fabrication 5000 V bipolar solid-state UFHVS for a high-resolution mass spectrometer. A double-pulse transformer isolates the circuit's high- and low-voltage sides and synchronously drives series-connected cascode SiC FETs to form its push-pull topology. This scheme allows transmitting drive signals with long widths but without the magnetic saturation of the transformer. Testing results show that output pulses reach a maximum voltage of 5000 V and a width of 150 µs, with rising and falling times of 8.5 and 18.3 ns, respectively. More importantly, they have nearly no voltage decay.

2.
Rev Sci Instrum ; 93(11): 113310, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461426

RESUMO

A cryogenic beam apparatus for studying neutral clusters has been built and tested. The lowest beam temperature reaches less than 9 K at a repetition rate of 20 Hz. Mechanical decoupling from the refrigerator avoids misalignment during temperature ramping. Adopting a permanent magnet based magnetic deflector eliminates the hysteresis and electric noise of the traditional electromagnet and offers excellent reproducibility of the applied magnetic field. The mass spectrometer can operate in either Mass Spectroscopy Time-Of-Flight mode or Position-Sensitive Time-Of-Flight mode with spatial resolution better than 7 µm. Its performance is demonstrated with niobium and cobalt clusters.

3.
J Comput Chem ; 43(29): 1978-1984, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125399

RESUMO

The bonding and electronic properties of Inn - , Inn Si- , and Inn Ge- (n = 3-16) clusters have been computationally investigated. An intensive global search for the ground-state structures of these clusters were conducted using the genetic algorithm coupled with density functional theory (DFT). The ground-state structures of these clusters have been identified through the comparison between simulated photoelectron spectra (PES) of the found lowest-energy isomers and the experimentally measured ones. Doping semiconductor atom (Si or Ge) can significantly change the structures of the In clusters in most sizes, and the dopant prefers to be surrounded by In atoms. There are three structural motifs for Inn X- (X = Si, Ge, n = 3-16), and the transition occurs at sizes n = 5 and 13. All Inn Si- and Inn Ge- share the same configurations and similar electronic properties except for n = 8. Among all above studied clusters, In13 - stands out with the largest vertical detachment energy (VDE), HOMO-LUMO gap, (Eb ) and second order energy difference Δ2 E due to its closed electronic shell of (1S)2 (1P)6 (1D)10 (2S)2 (1F)14 (2P)6 . Similarly, the neutral In12 X (X = Si, Ge) clusters are also identified as superatoms but with electronic configuration of (1S)2 (1P)6 (2S)2 (1D)10 (1F)14 (2P)6 .

4.
Phys Chem Chem Phys ; 24(30): 18321-18330, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880636

RESUMO

We investigated the structural evolution and electronic properties of medium-sized silicon cluster anions doped with two transition metal atoms, TM2Sin- (TM = V, Cr; n = 14-20), by using mass-selective anion photoelectron spectroscopy combined with density functional theory (DFT) calculations. Putative ground state structures of these clusters were obtained by using a genetic algorithm coupled with the DFT calculations. It was found that the two TM atoms tend to form a TM-TM bond, which - except for V2Si19- - is shorter than the nearest neighbour distance in the crystalline state of the respective metals. The V2Sin- clusters with n = 14 to 17 exhibit structures based on a silicon hexagonal antiprism, while the larger ones exhibit more fullerene-like cage structures. Cr2Sin- clusters follow the same trend, although with a silicon hexagonal prism structure for n = 14 and 15, and the transition to fullerene-like structures occurring at n = 17. Among these clusters, TM2Si18- have the largest average binding energy and second order differences in energy, therefore the highest relative stability. All of the clusters possess total magnetic moment of 1 µB, but with very different contributions from the doped TM atoms. Especially in the Cr doped clusters there is a tendency towards an anitiferromagnetic arrangement of the magnetic moments of the two Cr atoms.

5.
Phys Chem Chem Phys ; 24(15): 8839-8845, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35355038

RESUMO

We present a systematic study of the structures and electronic properties of vanadium-doped silicon cluster anions, VSin- (n = 14-20), by combining photoelectron spectroscopy (PES) measurements and density functional theory (DFT) based theoretical calculations. High resolution PES of low temperature (10 K) clusters are acquired at a photon wavelength of 248 nm. Low-lying structures of VSi14-20- are obtained by a genetic algorithm based global minimum search code combined with DFT calculations. Excellent agreement is found between the measured PES and the simulated electron density of states of the putative ground-state structures. We conclude that clusters with sizes n = 14 and n = 15 prefer cage-like structures, with the encapsulated vanadium atom bonding with all silicon atoms, while a fullerene-like motif is more favorable for n ≥ 16. For the sizes n = 16 to 19, the structures consist of a V@Si14 with two, three, four, and five Si atoms on the surface of the cage. For n = 20 the structure consists of a V@Si15 with five Si atoms on the surface of the cage. VSi14- has the highest stability and stands out as a simultaneous closing of electronic and geometrical shells.

6.
J Phys Chem A ; 126(8): 1329-1335, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35175756

RESUMO

CrSin- (n = 14-18) cluster anions have been investigated by a combination of photoelectron spectroscopy (PES) and first-principles calculations. The lowest-lying structures of the clusters have been determined by a global minimum search based on the genetic algorithm, combined with density functional theory (DFT) calculations. The simulated PES spectra of the lowest-energy isomers are in agreement with the experimental results, which gives strong evidence that the correct structures have been found. While sizes n = 14 and n = 15 prefer cage-like structures based on multi-center bonding within the cage, the larger sizes adopt structures based on fullerene-type cages around the Cr atom, with the additional atoms attached to the cage surface. A Hirshfeld analysis shows that the Cr atoms act as electron donors in all clusters, thus enhancing the electron count in the cage. It also reveals that the magnetic moment of 1µB shown by all clusters is mainly contributed by the Cr atom. One interesting exception is size 17, where the Cr atom contributes a small moment antiparallel to that of the silicon cage.

7.
J Phys Condens Matter ; 30(35): 354002, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30051877

RESUMO

Size-selected anionic silicon clusters, [Formula: see text] (n = 14-20), have been investigated by photoelectron spectroscopy and density functional theory (DFT) calculations. Low-energy structures of the clusters are globally searched for by using a genetic algorithm based on DFT calculations. The electronic density of states and vertical detachment energies have been simulated by using ten DFT functionals and compared to the experimental results. We systematically evaluated the DFT functionals for the calculation of the energetics of silicon clusters. CCSD(T) single-point energies based on MP2 optimized geometries for selected isomers of [Formula: see text] are also used as benchmark for the energy sequence. The HSE06 functional with aug-cc-pVDZ basis set is found to show the best performance. Our global minimum search corroborates that most of the lowest-energy structures of [Formula: see text] (n = 14-20) clusters can be derived from assembling tricapped trigonal prisms in various ways. For most sizes previous structures are confirmed, whereas for [Formula: see text] a new structure has been found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA