Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 15(1): 14, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287463

RESUMO

BACKGROUND: A deterioration in the meat quality of broilers has attracted much more attention in recent years. L-malic acid (MA) is evidenced to decrease meat drip loss in broilers, but the underlying molecular mechanisms are still unclear. It's also not sure whether the outputs obtained under experimental conditions can be obtained in a commercial condition. Here, we investigated the effects and mechanisms of dietary MA supplementation on chicken meat drip loss at large-scale rearing. RESULTS: Results showed that the growth performance and drip loss were improved by MA supplementation. Meat metabolome revealed that L-2-aminoadipic acid, ß-aminoisobutyric acid, eicosapentaenoic acid, and nicotinamide, as well as amino acid metabolism pathways connected to the improvements of meat quality by MA addition. The transcriptome analysis further indicated that the effect of MA on drip loss was also related to the proper immune response, evidenced by the enhanced B cell receptor signaling pathway, NF-κB signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. CONCLUSIONS: We provided evidence that MA decreased chicken meat drip loss under commercial conditions. Metabolome and transcriptome revealed a comprehensive understanding of the underlying mechanisms. Together, MA could be used as a promising dietary supplement for enhancing the water-holding capacity of chicken meat.

2.
Adv Sci (Weinh) ; 10(35): e2305080, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870215

RESUMO

Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.


Assuntos
Adipogenia , Músculo Esquelético , Humanos , Animais , Camundongos , Fenótipo , Desenvolvimento Muscular/genética , RNA , Mamíferos
3.
Anim Nutr ; 14: 185-192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808951

RESUMO

The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.

4.
Redox Biol ; 67: 102889, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741046

RESUMO

Maternal diets during pregnancy and lactation are key determinants that regulate the development of metabolic syndrome (MetS) in offspring. l-malic acid (MA) was previously reported to improve antioxidant capacity and aerobic metabolism. However, the effects of maternal MA consumption on the metabolic features of offspring remain largely unexplored. Herein, through pig models consuming MA-enriched diets during late pregnancy and lactation, we found that maternal MA consumption potentiated the anti-inflammatory and antioxidant capacity of sows, thereby improving their reproductive performance and the growth performance of piglets. Maternal MA consumption also induced a transition of slow-twitch to fast-twitch fibers in the early life of offspring. Along with muscle growth and fiber-type transition, insulin sensitivity and glucose metabolism, including aerobic metabolism and glycolysis, were improved in the skeletal muscle of offspring. An untargeted metabolomic analysis further revealed the contribution of modified amino acid metabolism to the improved aerobic metabolism. Mechanistically, maternal MA consumption remodeled colonic microbiota of their offspring. Briefly, the abundance of Colidextribacter, Romboutsia, and Family_XIII_AD3011_group increased, which were positively associated with the antioxidant capacity and glucose metabolism of skeletal muscles. A decreased abundance of Prevotella, Blautia, Prevotellaceae_NK3B31_group, and Collinsella was also detected, which were involved in less insulin sensitivity. Notably, milk metabolites, such as ascorbic acid (AA) and granisetron (GS), were found as key effectors regulating the gut microbiota composition of piglets. The properties of AA and GS in alleviating insulin resistance, inflammation, and oxidative stress were further verified through mice treated with high-fat diets. Overall, this study revealed that maternal MA consumption could modulate the inflammatory response, antioxidant capacity, and glucose metabolism by regulating the gut microbiota of offspring through the vertical transmission of milk metabolites. These findings suggest the potential of MA in the prevention and treatment of MetS in early life.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Síndrome Metabólica , Animais , Gravidez , Suínos , Feminino , Camundongos , Antioxidantes , Dieta Hiperlipídica , Ácido Ascórbico , Glucose
5.
J Anim Sci Biotechnol ; 14(1): 114, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689725

RESUMO

BACKGROUND: Maternal nutrition is essential in keeping a highly efficient production system in the pig industry. Laminarin has been shown to improve antioxidant capacity, reduce the inflammatory response, and favor the homeostasis of intestinal microbiota. However, the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown. METHODS: A total of 40 Landrace × Yorkshire multiparous sows on d 85 of gestation, similar in age, body weight (BW), parity and reproductive performance, were randomly divided into four dietary treatments with 10 sows per treatment, receiving a control diet (basal pregnancy or lactating diets) and a basal diet supplemented with 0.025%, 0.05% and 0.10% laminarin, respectively. The experiment lasted from d 85 of gestation to d 21 of lactation. RESULTS: Laminarin supplementation linearly increased number born alive per litter (P = 0.03), average daily feed intake (ADFI, P < 0.01), and total milk yield of sows during the lactation of 1-21 d (P = 0.02). Furthermore, maternal laminarin supplementation increased the average daily gain (ADG) of piglets while tending to reduce the culling and death rate before weaning. In addition, alterations to the composition of colostrum and milk, as well as to serum inflammatory cytokines and immunoglobulins of sows were observed. The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring. CONCLUSIONS: Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.

6.
J Nutr ; 153(11): 3207-3219, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696395

RESUMO

BACKGROUND: Lauric acid (LA), a major, natural, medium-chain fatty acid, is considered an efficient energy substrate for intense exercise and in patients with long-chain fatty acid ß-oxidation disorders. However, few studies have focused on the role of LA in exercise performance and related glucolipid metabolism in vivo. OBJECTIVES: We aimed to investigate the effect of dietary supplementation with LA on exercise performance and related metabolic mechanisms. METHODS: Male C57BL/6N mice (14 wk old) were fed a basal diet or a diet containing 1% LA, and a series of exercise tests, including a high-speed treadmill test, aerobic endurance exercises, a 4-limb hanging test, and acute aerobic exercises, were performed. RESULTS: Dietary supplementation with 1.0% LA accelerated the recovery from fatigue after explosive exercise (P < 0.05) and improved aerobic endurance and muscle strength in sedentary mice (P = 0.039). Lauric acid intake not only changed muscle fatty acid profiles, including increases in C12:0 and n-6/n-3 PUFAs (P < 0.001) and reductions in C18:0, C20:4n-6, C22:6n-3, and n-3 PUFAs (P < 0.05) but also enhanced fat mobilization from adipose tissue and fatty acid oxidation in the liver, at least partly via the AMP-activated protein kinase-acetyl CoA carboxylase pathway (P < 0.05). Likewise, LA supplementation promoted liver glyconeogenesis and conserved muscular glycogen during acute aerobic exercise (P < 0.05), which was accompanied by an increase in the mitochondrial DNA copy number and Krebs cycle activity in skeletal muscle (P < 0.05). CONCLUSIONS: Dietary supplemental LA serves as an efficient energy substrate for sedentary mice to improve aerobic exercise endurance and muscle strength through regulation of glucolipid metabolism. These findings imply that LA supplementation might be a promising nutritional strategy to improve aerobic exercise performance in sedentary people.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Humanos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Resistência Física
7.
Cell Death Discov ; 9(1): 87, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894534

RESUMO

The normal function of skeletal muscle and adipose tissue ensures whole-body glucose homeostasis. Ca2+ release channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) plays a vital role in regulating diet-induced obesity and disorders, but its functions in peripheral tissue regulating glucose homeostasis remain unexplored. In this study, mice with Ip3r1 specific knockout in skeletal muscle or adipocytes were used for investigating the mediatory role of IP3R1 on whole-body glucose homeostasis under normal or high-fat diet. We reported that IP3R1 expression levels were increased in the white adipose tissue and skeletal muscle of diet-induced obese mice. Ip3r1 knockout in skeletal muscle improved glucose tolerance and insulin sensitivity of mice on a normal chow diet, but worsened insulin resistance in diet-induced obese mice. These changes were associated with the reduced muscle weight and compromised Akt signaling activation. Importantly, Ip3r1 deletion in adipocytes protected mice from diet-induced obesity and glucose intolerance, mainly due to the enhanced lipolysis and AMPK signaling pathway in the visceral fat. In conclusion, our study demonstrates that IP3R1 in skeletal muscle and adipocytes exerts divergent effects on systemic glucose homeostasis, and characterizes adipocyte IP3R1 as a promising target for treating obesity and type 2 diabetes.

8.
Meat Sci ; 198: 109117, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689802

RESUMO

To understand characteristics of carcass traits and meat quality in pig population, 22 indicators of carcass characteristics and meat quality traits were measured on 278 Duroc × Landrace × Yorkshire barrows that were slaughtered in different seasons (spring, summer, autumn and winter). The effects of body weight and season on carcass characteristics and meat quality were analyzed by GLM procedure, followed the Bonferroni multiple test. The phenotypic correlations among those traits were calculated by employing the CORR procedure. In addition, the linear regression equations were constructed by stepwise regression model in REG procedure. The results showed that pigs slaughtered in spring had the heaviest body weight among the four seasons (P < 0.05), pigs slaughtered in summer had the lowest backfat depth and shear force (P < 0.05), and pigs slaughtered in winter had the lowest drip loss (P < 0.05). The results showed more variation in backfat depth, drip loss, intramuscular fat content, and shear force, compared with other indicators across pigs. Body weight had a significant association with loin eye area, average backfat depth and L⁎24 h (P < 0.05). Furthermore, regression equations for drip loss, cooking loss, shear force, and intramuscular fat content were constructed using more accessible indicators. Collectively, this study provided an overall view of carcass and meat quality traits in a commercial pig population in China, and illustrated that season significantly affected carcass characteristics and meat quality traits independently of body weight.


Assuntos
Composição Corporal , Carne , Suínos , Animais , Estações do Ano , Fenótipo , Peso Corporal
9.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275628

RESUMO

Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.

10.
Foods ; 11(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359950

RESUMO

L-malic acid is a vital intermediate in the citric acid cycle and has been reported to improve the antioxidant capacity and aerobic oxidation of weaned piglets; however, its application in finishing pigs is limited at present. This study explored the effects of dietary L-malic acid supplementation on the carcass traits and meat quality of finishing pigs. In a 45-day experiment, 192 Duroc × Landrace × Yorkshire pigs (75.01 ± 0.51 kg) were divided into four treatments, i.e., a basal diet supplemented with 0, 0.5%, 1%, and 2% L-malic acid complex. The results showed that L-malic acid supplementation had no effects on the growth performance of finishing pigs. Importantly, L-malic acid significantly increased redness (a*) value at 24-h postmortem (quadratic, p < 0.05) and tended to increase the proportion of oxymyoglobin (OMb) (quadratic, p = 0.10), as well as the total antioxidant capacity (T-AOC) activity (quadratic, p = 0.08) in the longissimus dorsi (LD) muscle. Further, dietary supplementation of 1% L-malic acid markedly increased the protein expression level of slow skeletal myosin heavy chain (MyHC) in the LD muscle (p < 0.05). Moreover, 0.5% and 2% L-malic acid supplementation significantly increased carcass length and loin eye area (p < 0.05). In conclusion, dietary L-malic acid could effectively improve the meat color and carcass traits of finishing pigs.

11.
Anim Nutr ; 11: 112-120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189375

RESUMO

The current study was carried out to detect the effect of dietary guanidinoacetic acid (GAA) supplementation on carcass characteristics and meat quality in finishing pigs fed different dietary crude protein (CP) levels. Sixty-four barrows with an initial body weight of 73.05 ± 2.34 kg were randomly allocated into 1 of 4 dietary treatments in a 2 (100% vs. 125% NRC CP level) × 2 (0 vs. 300 mg/kg GAA) factorial arrangement (n = 7). The feeding trial lasted for 49 d. GAA supplementation significantly reduced drip loss (P = 0.01), free water distribution (T 23 peak area ratio) (P = 0.05) and the concentrations of free alanine, threonine, methionine and isoleucine (P < 0.05); but increased total glycine content (P = 0.03) in the longissimus dorsi muscle of finishing pigs regardless of the dietary CP levels. Furthermore, primary myogenic cell differentiation system was employed to investigate the influence of inclusion of GAA on free amino acid concentrations in myotubes (n = 4) and validate the finding in the animal feeding trial. We found that GAA inclusion in culture medium also decreased intracellular concentrations of free alanine, threonine, methionine, isoleucine, valine and proline in differentiated primary myogenic cells in vitro (P < 0.05). Meanwhile, relative to diets with 100% NRC CP level, the intake of diets with 125% NRC CP level improved sarcoplasmic protein solubility, increased the contents of carnosine and total free amino acids as well as flavor amino acids in the longissimus dorsi muscle and decreased backfat thickness at the 6-7th ribs in pigs (P < 0.05). In addition, we observed that the impact of dietary GAA supplementation on the last rib fat thickness, shear force, and free lysine content in the longissimus dorsi muscle was dependent on dietary CP levels (P < 0.05). Collectively, dietary GAA supplementation can reduce drip loss, decrease the concentrations of free amino acids and flavor amino acids of fresh meat independent of dietary CP levels.

12.
Anim Nutr ; 11: 48-59, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36091258

RESUMO

Our previous study found that soybean isoflavones in soybean meal play an important role in improving growth performance and antioxidant capacity in pigs. However, it is still unknown whether long-term supplementation with daidzein, an active molecule deglycosylated from daidzin, in a corn-soybean meal diet can enhance growth performance in pigs. Thus, in the present study, an animal trial was carried out to investigate the effects of dietary supplementation with daidzein on the growth performance and antioxidant capacity of pigs. A total of 80 weaned piglets (40 barrows and 40 females) were assigned to 4 treatments with 5 pens per treatment and 4 piglets per pen and fed a diet supplemented with 0, 25, 50 and 100 mg/kg daidzein for a 72-day trial. In addition, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to explore the underlying antioxidant mechanisms of daidzein. IPEC-J2 cells were treated with 0.6 mM hydrogen peroxide (H2O2) in the presence or absence of 40 µM daidzein. The results showed that adding 50 mg/kg of daidzein to the diet significantly improved body weight on day 72, average daily gain (ADG) during days 0 to 72 and plasma superoxide dismutase (SOD) activity on day 42 (P < 0.05). Treatment with 0.6 mM H2O2 for 1 h significantly decreased cell viability and catalase (CAT) activity and increased intracellular reactive oxygen species (ROS) levels and malondialdehyde (MDA) content (P < 0.05), while pretreatment with 40 µM daidzein prevented the decrease in cell viability and CAT activity and the increase in intracellular ROS levels and MDA content caused by H2O2 (P < 0.05). In addition, H2O2 stimulation significantly suppressed the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), CAT, occludin and zonula occludens-1 (ZO-1), while pretreatment with daidzein preserved the expression of Nrf2, CAT and occludin in H2O2-stimulated IPEC-J2 cells (P < 0.05). In conclusion, our results suggested that long-term dietary supplementation with 50 mg/kg daidzein improved growth performance in pigs and was beneficial to the antioxidant capacity of pigs. Daidzein exerted protective effects against H2O2-induced oxidative stress in IPEC-J2 cells and the underlying mechanism may be related to the activation of the Nrf2 signaling pathway.

13.
Antioxidants (Basel) ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883831

RESUMO

Yeast ß-glucan is a natural antioxidant and has been reported to improve growth performance of piglets, but its application in improving pork quality is limited. This study investigated the effects of dietary yeast ß-glucan supplementation on meat quality, antioxidant capacity and gut microbiota of finishing pigs. In a 40-day experiment, ninety finishing pigs (Duroc × Landrace × Yorkshire, 70.47 ± 0.04 kg) were randomly allocated into five treatments including a basal diet supplemented with 0, 50, 100, 200 and 400 mg/kg yeast ß-glucan. Results showed that yeast ß-glucan significantly increased pH45 min (linear and quadratic, p < 0.01) and a*45 min (linear, p < 0.05), and reduced cooking loss (linear, p < 0.05) and drip loss (quadratic, p < 0.05) of meat in finishing pigs. Importantly, the 200 mg/kg group exhibited the highest values of pH45 min (p < 0.01) and the lowest values of drip loss (p < 0.05), accompanied by a decreased lactate content (p < 0.05) and glycolytic potential (p < 0.05). Dietary supplementation of 200 mg/kg yeast ß-glucan markedly increased catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05) and total antioxidant capacity (T-AOC) (p < 0.01) activities in skeletal muscle. Moreover, WPS-2 abundance was decreased significantly in colonic digesta by 200 mg/kg yeast ß-glucan and exhibited a positive association with muscle lactate content and drip loss. Together, dietary 200 mg/kg yeast ß-glucan supplementation effectively improved pH value and the water-holding capacity of fresh meat through reducing muscle postmortem glycolysis, increasing antioxidant capacity and altering the gut microbiota composition of finishing pigs.

14.
Front Nutr ; 9: 899871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898709

RESUMO

The aim of this study was to investigate effects of dietary ratio of valine to isoleucine [R(V/I)] on carcass characteristics and meat quality of finishing pigs and whether slaughter weight influence the effect. We carried out a 2 × 3 factorial trial with two slaughter weight (105 vs. 130 kg) and three R(V/I) (0.58, 1.23, and 2.60 at 75-100 kg body weight, and 0.70, 1.24, and 2.39 at 100-135 kg body weight for L-, N- and H-R (V/I), respectively). Data show that increasing slaughter weight significantly increased meat color (a*45 min and b*45 min), drip loss and shear force (P < 0.05). Meanwhile, increasing slaughter weight reduced sarcomere length, the proportion of protein-bound water, and most kinds of muscular total amino acid contents except for tryptophan and arginine, while increased contents of muscular free lysine, tryptophan, leucine, isoleucine, valine, alanine, and arginine in the M. longissimus thoracis (P < 0.05). Health lipid indices based on fatty acid composition of intramuscular lipid were improved as the slaughter weight increased (P < 0.05). Notably, pigs received N-R (V/I) diet improved carcass traits in terms of thinner backfat thickness and higher fat-free lean index, as well as increased meat flavor-contributing amino acids at the cost of reduced intramuscular fat content and increased shear force of cooked meat compared with the pigs fed L-R (V/I) and H-R(V/I) diets (P < 0.05). H-R (V/I) diet decreased ultimate pH value and sarcomere length of the skeletal muscle but increased the proportion of free water (T 23), consequently, increased drip loss and cooking loss of fresh meat in pigs (P < 0.05). In conclusion, both slaughter weight and dietary ratio of valine to isoleucine exerted significant impacts on carcass characteristics, meat quality and nutrition values. In particular, carcass traits and meat color of lighter pigs were more susceptible to the influence of dietary R (V/I) relative to heavier pigs.

15.
J Anim Sci Biotechnol ; 13(1): 9, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35144690

RESUMO

BACKGROUND: Cytosolic Ca2+ plays vital roles in myogenesis and muscle development. As a major Ca2+ release channel of endoplasmic reticulum (ER), ryanodine receptor 1 (RyR1) key mutations are main causes of severe congenital myopathies. The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear. RESULTS: In the present study, both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation, myotube formation as well as the potential mechanism of RyR1-related myopathies. We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation, accompanied by significantly elevated cytoplasmic Ca2+ concentration. Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor, dantrolene, significantly reduced cytosolic Ca2+ and blocked multinucleated myotube formation. The elevation of cytoplasmic Ca2+ concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition, demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca2+ release channel. However, RyR1-knockout-induced Ca2+ leakage led to the severe ER stress and excessive unfolded protein response, and drove myoblasts into apoptosis. CONCLUSIONS: Therefore, we concluded that Ca2+ release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion. This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies, and provides a potential target for regulation of muscle characteristics and meat quality.

16.
J Anim Sci Biotechnol ; 13(1): 12, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35130973

RESUMO

Effects of added fat in sow diets on the sows' reproductive performance and offspring growth performance are influenced by multiple factors such as genetics, nutrition, parity, ambient temperatures, and farm management. Individual studies cannot cover all these factors. With the view to address this challenge, we searched all studies that were published from 1986 to 2020, and performed a systematic review and meta-analysis on the fat effect. In total, 19 papers were collected and analyzed. Fat supplementation in sow diets during late gestation and lactation decreased average daily feed intake (ADFI, P < 0.05) and tended to increase average daily energy intake (ADEI, P = 0.11). It had no impact on litter weights at birth (P = 0.40) or weaning (P = 0.46). It increased total numbers of piglets at birth (P = 0.07), but had no effect on liveborn per litter (P = 0.90) or survival rate (P = 0.48) of piglets to weaning. Fat supplementation had no significant effect on sow body weight loss (P = 0.67) or backfat thickness changes (P = 0.66), but sows fed diets with added fat had increased milk fat concentration (P = 0.03) and shorter wean to estrus intervals (WEI, P = 0.01). In specific circumstances, fat supplementation tended to improve growth performance of piglets with low litter weights at birth (P = 0.14), or when the sows lost large amounts of body weight during lactation (P = 0.11). The level of supplemented fat was 10% and higher would decrease liveborn per litter at neutral temperature (P = 0.10). The meta-analysis revealed that fat supplementation to sows diet during late gestation and lactation can be beneficial for sow reproductive performance and litter growth performance.

17.
Anim Biotechnol ; 33(2): 339-345, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33928841

RESUMO

Thirty castrated Duroc × Landrace × Yorkshire (DLY) pigs were randomly divided into three groups and slaughtered at 180, 210, and 240 days of age, respectively. Here, we found that the live weight, carcass weight, carcass length, dressing percentage, eye muscle area, backfat deposit, muscle yellowness b* value, drip loss, and cooking loss increased significantly, and the muscle pH 45 min value decreased dramatically as the slaughter age of DLY pigs extended. Moreover, increasing the slaughter age of DLY pigs could obtain higher n-3 polyunsaturated fatty acid (PUFA) percentage, crude protein, essential amino acids (EAA) contents and EAA/NEAA level, and lower n-6/n-3 PUFA level and antioxidant capacity. Together, this study suggests that the older slaughter age improves the carcass traits and nutritional value of pork, but leads to a significant decrease in pork sensory quality in DLY finishing pigs.


Assuntos
Composição Corporal , Carne , Animais , Fenótipo , Suínos
18.
Mol Nutr Food Res ; 66(3): e2100728, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787361

RESUMO

SCOPE: Enteral feeding is a primary source of cysteine for intestinal mucosa given negligible transsulfuration activity in enterocytes and furthermore very few cysteine uptake from arterial blood. This study aims to explore the role of cysteine in maintaining intestinal integrity and function. METHODS AND RESULTS: The intestinal porcine enterocytes (IPEC-J2) are cultured in a cysteine-deprived medium with or without glutathione supplementation upon the inhibitions of glutathione synthesis or degradation. As a result, cysteine deprivation impairs mitochondrial function, suppresses mechanistic target of rapamycin (mTOR) signaling, and activates general control nonderepressible 2 (GCN2) signaling, and might lead to resultant ferroptosis. Glutathione supplementation can restore the impairment through degrading into cysteine, while glutathione synthesis inhibition does not disturb the role of cysteine in keeping the intestinal epithelial cells. Furthermore, piglets are fed with cysteine-deficient, -adequate, and -surplus diet for 28 days as a porcine model. In this study, it is evidenced that intestinal integrity and individual growth benefit from adequate dietary cysteine. CONCLUSION: Adequate dietary cysteine supply is essential for intestinal mucosal integrity, epithelial cell turnover, and amino acid sensing as well as optimal individual growth. Cysteine exerts its role independent of glutathione and glutathione restores the impairment of cysteine-deprivation on intestinal mucosal through degrading into cysteine.


Assuntos
Cisteína , Intestinos , Animais , Cisteína/farmacologia , Enterócitos/metabolismo , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Suínos
19.
Mol Nutr Food Res ; 66(6): e2100644, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932259

RESUMO

SCOPE: Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model is created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS: A total of 24 pigs are divided into two equal groups, which were fed a diet with either 0.007 mg kg-1 Se or 0.3 mg kg-1 Se for 16 weeks. Se deficiency causes cardiac oxidative stress by blocking glutathione and thioredoxin systems and increases thioredoxin domain-containing protein S-nitrosylation. Energy production is disordered, as free fatty acids are overloaded, the tricarboxylic acid cycle is strengthened, and three respiratory chain proteins enhance S-nitrosylation. Excess free fatty acids lead to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and causes an increase in malondialdehyde. Moreover, increased palmitic acid enhances de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiates inflammation via cytosolic DNA-sensing pathways, which activates downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS: The present study identifies a lipid metabolic vulnerability and inflammation initiation pathway via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment.


Assuntos
Selênio , Animais , Ácidos Graxos não Esterificados , Inflamação , Estresse Oxidativo , Suínos , Tiorredoxinas
20.
Anim Nutr ; 7(4): 1115-1123, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738042

RESUMO

This study aimed to explore the mechanism underlying arginine-promoted myogenesis of myoblasts. C2C12 cells were cultured with a medium containing 0.1, 0.4, 0.8, or 1.2 mmol/L arginine, respectively. Cell proliferation, viability, differentiation indexes, cytoplasmic Ca2+ concentration, and relative mRNA expression levels of myogenic regulatory factors (MRF) and key Ca2+ channels were measured in the absence or presence of 2 chemical inhibitors, dantrolene (DAN, 10 µmol/L) and nisoldipine (NIS, 10 µmol/L), respectively. Results demonstrated that arginine promoted myogenic differentiation and myotube formation. Compared with the control (0.4 mmol/L arginine), 1.2 mmol/L arginine upregulated the relative mRNA expression levels of myogenin (MyoG) and Myomaker at d 2 during myogenic induction (P < 0.05). Cytoplasmic Ca2+ concentrations were significantly elevated by arginine supplementation at d 2 and 4 (P < 0.05). Relative mRNA expression levels of Ca2+ channels including the type 1 ryanodine receptor (RyR1) and voltage-gated Ca2+ channel (Cav1.1) were upregulated by 1.2 mmol/L arginine during 2-d myogenic induction (P < 0.01). However, arginine-promoted myogenic potential of myoblasts was remarkably compromised by DAN and NIS, respectively (P < 0.05). These findings evidenced that the supplementation of arginine promoted myogenic differentiation and myotube formation through increasing cytoplasmic Ca2+ concentration from both extracellular and sarcoplasmic reticulum Ca2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA