Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(11): 28, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010283

RESUMO

Purpose: Cells grown in milliliter volume devices have difficulty measuring low-abundance secreted factors due to low resulting concentrations. Using microfluidic devices increases concentration; however, the constrained geometry makes phenotypic characterization with transepithelial electrical resistance more difficult and less reliable. Our device resolves this problem. Methods: We designed and built a novel microfluidic "Puck" assembly using laser-cut pieces from preformed sheets of silicone and commercial off-the-shelf parts. Transwell membranes containing polarized retinal pigment epithelial (RPE) cells were reversibly sealed within the Puck and used to study polarized protein secretion. Protein secretion from the apical and basal surfaces in response to hypoxic conditions was quantified using an immunoassay method. Computational fluid modeling was performed on the chamber design. Results: Under hypoxic culture conditions (7% O2), basal vascular endothelial growth factor (VEGF) secretion by polarized RPE cells increased significantly from 1.40 to 1.68 ng/mL over the first 2 hours (P < 0.0013) and remained stably elevated through 4 hours. Conversely, VEGF secretion from the apical side remained constant under the same hypoxic conditions. Conclusions: The Puck can be used to measure spatiotemporal protein secretion by polarized cells into apical and basal microniches in response to environmental conditions. Computational model results support the absence of biologically significant shear stress to the cells caused by the device. Translational Relevance: The Puck can be used validate the mature phenotypic health of autologous induced pluripotent stem cells (iPSC)-derived RPE cells prior to transplantation.


Assuntos
Microfluídica , Fator A de Crescimento do Endotélio Vascular , Células Epiteliais/metabolismo , Pigmentos da Retina
2.
J Cell Physiol ; 238(10): 2373-2389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610047

RESUMO

Mutations in the Prominin-1 (Prom1) gene disrupt photoreceptor disk morphogenesis, leading to macular dystrophies. We have shown that human retinal pigment epithelial (RPE) homeostasis is under the control of Prom1-dependent autophagy, demonstrating that Prom1 plays different roles in the photoreceptors and RPE. It is unclear if retinal and macular degeneration caused by the loss of Prom1 function is a cell-autonomous feature of the RPE or a generalized disease of photoreceptor degeneration. In this study, we investigated whether Prom1 is required for mouse RPE (mRPE) autophagy and phagocytosis, which are cellular processes essential for photoreceptor survival. We found that Prom1-KO decreases autophagy flux, activates mTORC1, and concomitantly decreases transcription factor EB (TFEB) and Cathepsin-D activities in mRPE cells. In addition, Prom1-KO reduces the clearance of bovine photoreceptor outer segments in mRPE cells due to increased mTORC1 and reduced TFEB activities. Dysfunction of Prom1-dependent autophagy correlates with both a decrease in ZO-1 and E-cadherin and a concomitant increase in Vimentin, SNAI1, and ZEB1 levels, consistent with induction of epithelial-mesenchymal transition (EMT) in Prom1-KO mRPE cells. Our results demonstrate that Prom1-mTORC1-TFEB signaling is a central driver of cell-autonomous mRPE homeostasis. We show that Prom1-KO in mRPE leads to RPE defects similar to that seen in atrophic age-related macular degeneration and opens new avenues of investigation targeting Prom1 in retinal degenerative diseases.

3.
Stem Cell Res Ther ; 13(1): 260, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715869

RESUMO

BACKGROUND: Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. METHODS: We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE "cybrids." Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. RESULTS: We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. CONCLUSIONS: Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome MELAS , Degeneração Macular , Autofagia/genética , DNA Mitocondrial/genética , Metabolismo Energético/genética , Células Epiteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patologia , Degeneração Macular/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo
4.
J Cell Mol Med ; 26(14): 3873-3890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670018

RESUMO

Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Glioblastoma , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Transcrição STAT3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
5.
Biochem Biophys Res Commun ; 498(3): 573-578, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29522718

RESUMO

Proliferative vitreoretinopathy (PVR) is a common complication of open globe injury and the most common cause of failed retinal detachment surgery. The response by retinal pigment epithelial (RPE) cells liberated into the vitreous includes proliferation and migration; most importantly, epithelial to mesenchymal transition (EMT) of RPE plays a central role in the development and progress of PVR. For the first time, we show that knockdown of BIRC5, a member of the inhibitor of apoptosis protein family, using either lentiviral vector based CRISPR/Cas9 nickase gene editing or inhibition of survivin using the small-molecule inhibitor YM155, results in the suppression of EMT in RPE cells. Knockdown of survivin or inhibition of survivin significantly reduced TGFß-induced cell proliferation and migration. We further demonstrated that knockdown or inhibition of survivin attenuated the TGFß signaling by showing reduced phospho-SMAD2 in BIRC5 knockdown or YM155-treated cells compared to controls. Inhibition of the TGFß pathway using TGFß receptor inhibitor also suppressed survivin expression in RPE cells. Our studies demonstrate that survivin contributes to EMT by cross-talking with the TGFß pathway in RPE cells. Targeting survivin using small-molecule inhibitors may provide a novel approach to treat PVR disease.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Inibidoras de Apoptose/genética , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Survivina , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/metabolismo
6.
Invest Ophthalmol Vis Sci ; 58(4): 2366-2387, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28437526

RESUMO

Purpose: Prominin-1 (Prom1) is a transmembrane glycoprotein, which is expressed in stem cell lineages, and has recently been implicated in cancer stem cell survival. Mutations in the Prom1 gene have been shown to disrupt photoreceptor disk morphogenesis and cause an autosomal dominant form of Stargardt-like macular dystrophy (STGD4). Despite the apparent structural role of Prom1 in photoreceptors, its role in other cells of the retina is unknown. The purpose of this study is to investigate the role of Prom1 in the highly metabolically active cells of the retinal pigment epithelium (RPE). Methods: Lentiviral siRNA and the genome editing CRISPR/Cas9 system were used to knockout Prom1 in primary RPE and ARPE-19 cells, respectively. Western blotting, confocal microscopy, and flow sight imaging cytometry assays were used to quantify autophagy flux. Immunoprecipitation was used to detect Prom1 interacting proteins. Results: Our studies demonstrate that Prom1 is primarily a cytosolic protein in the RPE. Stress signals and physiological aging robustly increase autophagy with concomitant upregulation of Prom1 expression. Knockout of Prom1 increased mTORC1 and mTORC2 signaling, decreased autophagosome trafficking to the lysosome, increased p62 accumulation, and inhibited autophagic puncta induced by activators of autophagy. Conversely, ectopic overexpression of Prom1 inhibited mTORC1 and mTORC2 activities, and potentiated autophagy flux. Through interactions with p62 and HDAC6, Prom1 regulates autophagosome maturation and trafficking, suggesting a new cytoplasmic role of Prom1 in RPE function. Conclusions: Our results demonstrate that Prom1 plays a key role in the regulation of autophagy via upstream suppression of mTOR signaling and also acting as a component of a macromolecular scaffold involving p62 and HDAC6.


Assuntos
Antígeno AC133/genética , Autofagia/genética , Regulação da Expressão Gênica , Degeneração Macular/genética , RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Antígeno AC133/biossíntese , Adulto , Idoso , Animais , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Adulto Jovem
7.
J Cancer ; 8(1): 57-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28123598

RESUMO

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

8.
J Cell Physiol ; 226(8): 2025-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21520054

RESUMO

Oxidative stress (OS) in the retina plays an important role in the development and progression of age-related macular degeneration (AMD). Our previous work has shown that OS can quantitatively regulate the expression of AP-1 family genes in the retinal pigment epithelium (RPE). In this study, we sought to determine whether AP-1 genes can be used as cellular biomarkers of OS to evaluate the efficacy of ascorbate, the major aqueous-phase antioxidant in the blood, in reducing OS in RPE cells in vitro. Human ARPE19 cells were pretreated with increasing levels of ascorbate (0-500 µM) for 3 days which was then removed from the medium. OS was induced 24 h later by the addition of hydrogen peroxide for 1-4 h, to bring the final media concentration of H(2)O(2) to 500 µM. FosB, c-Fos, and ATF3 gene expression was examined from 0 to 24 h after OS. Pretreatment with 200 µM ascorbate maximally reduced the transcriptional OS response of AP-1 genes by up to 87% after 1 and 4 h, compared to controls. One hundred micromolar of ascorbate provided a statistically significant, but far more modest effect. Ascorbate supplementation of 100-200 µM appears to strongly inhibit OS-induced activation of AP-1 in vitro, but pretreatment with higher levels of ascorbate conferred no additional advantage. These studies suggest that there are optimal levels of antioxidant supplementation to the RPE in vitro. Laboratory assays based upon transcription factor biomarkers may be useful to define beneficial molecular responses to new antioxidants, alternative dosing regimens, and to explore therapeutic efficacy in OS models in vitro.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
9.
Neurochem Res ; 36(4): 574-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21181264

RESUMO

The purpose of this study was to characterize the early molecular responses to quantified levels of serial oxidative stress (OS) in the human retinal pigment epithelium (RPE). Confluent ARPE-19 cells were cultured for 3 days in defined medium to stabilize gene expression. The cells were serially exposed to high levels of OS (500 µM H(2)O(2)) with up to 3 distinct stimuli presented 4 h apart. Gene expression was followed for at least 8 h following initiation of each OS. Using real time qPCR, we quantified the expression of immediate early genes from the AP-1 and EGR transcription factor families and other genes involved in regulating the redox status of the cells. Significant and quantitative changes were seen in the expression of five AP-1 transcription factor genes. The peak level of induced transcription from OS varied from two-fold to >64-fold over the first 4 h, depending on the gene and magnitude of OS. Serial responses were characterized and distinct types of quantifiable OS-specific responses were observed. The responses manifested controlled serial increases in expression of these genes in a manner dependent upon the rate of increase in transcription, the relative duration of the transcriptional stimulus, and the characteristic relaxation to the initial steady state. This complexity suggests a mechanism whereby the rate of increase in transcription directs alternative paths to effect downstream gene-specific responses to OS. The molecular mechanisms by which these signals are transduced and controlled in the RPE are speculative. However, the rapidity of the TF response, and the known autoregulation of TF promoters by their gene products suggests that the early control is likely mediated by phosphorylation and activation of existing AP-1 and EGR protein pools within the cell, modulated by the opposing activity of kinase and phosphatase enzymes. Because of the differences in both initial and serial responses to the input stresses, it appears that control theory may provide a useful characterization of the distinctions.


Assuntos
Retroalimentação , Regulação da Expressão Gênica , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Sequência de Bases , Primers do DNA , Proteína 1 de Resposta de Crescimento Precoce/genética , Humanos , Reação em Cadeia da Polimerase , Fator de Transcrição AP-1/genética
10.
J Cell Biochem ; 108(6): 1280-91, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19795388

RESUMO

The purpose of this study was to characterize the early molecular responses to quantified levels of oxidative stress (OS) in the human retinal pigment epithelium (RPE). Confluent ARPE-19 cells were cultured for 3 days in defined medium to stabilize gene expression. The cells were exposed to varying levels of OS (0-500 microM H(2)O(2)) for 1-8 h and gene expression was followed for up to 24-h after OS. Using real-time qPCR, we quantified the expression of immediate early genes from the AP-1 transcription factor family and other genes involved in regulating the redox status of the cells. Significant and quantitative changes were seen in the expression of six AP-1 transcription factor genes, FosB, c-Fos, Fra-1, c-Jun, JunB, and ATF3 from 1-8 h following OS. The peak level of induced transcription from OS varied from 2- to 128-fold over the first 4 h, depending on the gene and magnitude of OS. Increased transcription at higher levels of OS was also seen for up to 8-h for some of these genes. Protein translation was examined for 24-h following OS using Western blotting methods, and compared to the qPCR responses. We identified six AP-1 family genes that demonstrate quantitative upregulation of expression in response to OS. Two distinct types of quantifiable OS-specific responses were observed; dose-dependent responses, and threshold responses. Our studies show that different levels of OS can regulate the expression of AP-1 transcription factors quantitatively in the human RPE in vitro.


Assuntos
Regulação da Expressão Gênica , Estresse Oxidativo/genética , Epitélio Pigmentado da Retina/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular , Humanos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
11.
Brain ; 128(Pt 3): 652-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15634728

RESUMO

Progressive myoclonus epilepsy (PME) has a number of causes, of which Unverricht-Lundborg disease (ULD) is the most common. ULD has previously been mapped to a locus on chromosome 21 (EPM1). Subsequently, mutations in the cystatin B gene have been found in most cases. In the present work we identified an inbred Arab family with a clinical pattern compatible with ULD, but mutations in the cystatin B gene were absent. We sought to characterize the clinical and molecular features of the disorder. The family was studied by multiple field trips to their town to clarify details of the complex consanguineous relationships and to personally examine the family. DNA was collected for subsequent molecular analyses from 21 individuals. A genome-wide screen was performed using 811 microsatellite markers. Homozygosity mapping was used to identify loci of interest. There were eight affected individuals. Clinical onset was at 7.3 +/- 1.5 years with myoclonic or tonic-clonic seizures. All had myoclonus that progressed in severity over time and seven had tonic-clonic seizures. Ataxia, in addition to myoclonus, occurred in all. Detailed cognitive assessment was not possible, but there was no significant progressive dementia. There was intrafamily variation in severity; three required wheelchairs in adult life; the others could walk unaided. MRI, muscle and skin biopsies on one individual were unremarkable. We mapped the family to a 15-megabase region at the pericentromeric region of chromosome 12 with a maximum lod score of 6.32. Although the phenotype of individual subjects was typical of ULD, the mean age of onset (7.3 years versus 11 years for ULD) was younger. The locus on chromosome 12 does not contain genes for any other form of PME, nor does it have genes known to be related to cystatin B. This represents a new form of PME and we have designated the locus as EPM1B.


Assuntos
Síndrome de Unverricht-Lundborg/genética , Adolescente , Adulto , Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 12/genética , Progressão da Doença , Eletroencefalografia , Feminino , Genótipo , Homozigoto , Humanos , Escore Lod , Imageamento por Ressonância Magnética , Masculino , Linhagem , Síndrome de Unverricht-Lundborg/patologia , Síndrome de Unverricht-Lundborg/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA