RESUMO
Toxoplasmosis is caused by Toxoplasma gondii, which infects all warm-blooded animals, including humans. Currently, control measures for T. gondii infection are insufficient due to the lack of effective medications or vaccines. In this paper, recombinant T. gondii uridine phosphorylase (rTgUPase) was expressed in Escherichia coli and purified via Ni2+-NTA agarose. rTgUPase was inoculated intranasally into BALB/c mice, and the induced immune responses were evaluated by mucosal and humoral antibody and cytokine assays and lymphoproliferative measurements. Moreover, the protective effect against the T. gondii RH strain infection was assessed by calculating the burdens of tachyzoites in the liver and brain and by recording the survival rate and time. Our results revealed that mice immunised with 30 µg rTgUPase produced significantly higher levels of secretory IgA (sIgA) in nasal, intestinal, vaginal and vesical washes and synthesised higher levels of total IgG, IgG1 and, in particular, IgG2a in their blood sera. rTgUPase immunisation increased the production of IFN-gamma, interleukin IL-2 and IL-4, but not IL-10 from isolated mouse spleen cells and enhanced splenocyte proliferation in vitro. rTgUPase-inoculated mice were effectively protected against infection with the T. gondii RH strain, showing considerable reduction of tachyzoite burdens in liver and brain tissues after 30 days of infection, and a 44.29% increase in survival rate during an acute challenge. The above findings show that intranasal inoculation with rTgUPase provoked mucosal, humoral and cellular immune responses and indicate that rTgUPase might serve as a promising vaccine candidate for protecting against toxoplasmosis.
Title: L'immunisation intranasale avec l'uridine phosphorylase recombinante de Toxoplasma gondii confère une résistance contre la toxoplasmose aiguë chez la souris. Abstract: La toxoplasmose est causée par Toxoplasma gondii, qui infecte tous les animaux à sang chaud, y compris les humains. Actuellement, les mesures de contrôle de l'infection à T. gondii sont insuffisantes en raison du manque de médicaments ou de vaccins efficaces. Dans cet article, l'uridine phosphorylase recombinante de T. gondii (rTgUPase) a été exprimée dans Escherichia coli et purifiée via de l'agarose Ni2+-NTA. La rTgUPase a été inoculée par voie intranasale à des souris BALB/c et les réponses immunitaires induites ont été évaluées par des dosages d'anticorps et de cytokines muqueuses et humorales et par des mesures de lymphoprolifération. De plus, l'effet protecteur contre l'infection par la souche RH de T. gondii a été évalué en calculant la charge de tachyzoïtes dans le foie et le cerveau et en enregistrant le taux et la durée de survie. Nos résultats ont révélé que les souris immunisées avec 30 µg de rTgUPase produisaient des taux significativement plus élevés d'IgA sécrétoires (sIgA) dans les lavages nasaux, intestinaux, vaginaux et vésicaux et synthétisaient des taux plus élevés d'IgG totales, d'IgG1 et, en particulier, d'IgG2a dans leur sérum sanguin. L'immunisation par la rTgUPase a augmenté la production d'IFN-gamma, d'interleukine IL-2 et IL-4, mais pas d'IL-10 à partir de cellules de rate de souris isolées et a amélioré la prolifération des splénocytes in vitro. Les souris inoculées par la rTgUPase ont été efficacement protégées contre l'infection par la souche RH de T. gondii, montrant une réduction considérable de la charge de tachyzoïtes dans les tissus hépatiques et cérébraux après 30 jours d'infection et une augmentation de 44,29 % du taux de survie lors d'une épreuve aiguë. Les résultats ci-dessus montrent que l'inoculation intranasale de rTgUPase provoque des réponses immunitaires muqueuses, humorales et cellulaires et indiquent que la rTgUPase pourrait servir de candidat vaccin prometteur pour la protection contre la toxoplasmose.
Assuntos
Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Humanos , Feminino , Animais , Camundongos , Toxoplasma/genética , Uridina Fosforilase/genética , Proteínas de Protozoários/genética , Citocinas , Imunização , Imunoglobulina G , Camundongos Endogâmicos BALB C , Anticorpos Antiprotozoários , Toxoplasmose Animal/prevenção & controleRESUMO
Extracellular matrix proteins appear to be necessary for the synaptic plasticity that underlies addiction memory. In the brain, matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9), have been recently implicated in processes involving alcohol reward and memory. Here, we showed for the first time, the positive effects of MMP-9 on alcohol-induced conditioned place preference (CPP) behavior and hippocampal neuron plasticity in C57BL/6 mice. Using recombinant adeno-associated viruses to overexpress MMP-9 in the hippocampus, we investigated the NMDAR, PSD-95, and cellular cytoskeleton proteins F-actin/G-actin in the modulation of alcohol reward behavior in mice exposed to CPP. We found that hippocampal infusions of MMP-9 decreased alcohol-induced place preference suggesting a reduction in alcohol reward. Western blot analysis demonstrated that protein expression of NMDA receptors (GluN1, GluN2A and GluN2B) in the hippocampus of alcohol-exposed mice were higher than that of the saline group. Further, the expression of these proteins was decreased in MMP-9 overexpressing mice. MMP-9 also regulated the ratio of F-actin/G-actin (dendritic spines cytoskeleton proteins), which might be the key mediator for behavioral changes in mice. Consequently, our results highlight new evidence that MMP-9 may play an important role in the molecular mechanism underlying alcohol reward and preference.
Assuntos
Actinas , Etanol , Metaloproteinase 9 da Matriz , Plasticidade Neuronal , Animais , Camundongos , Actinas/metabolismo , Etanol/farmacologia , Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Condicionamento ClássicoRESUMO
Objective: To study the effects of Synaptotagmin1 gene knockout (Syt1+/-) on emotional behavior in mice and explore its possible mechanisms. Methods: Five 8-week-old male Syt1+/-mice and five wild-type (WT) mice in the same litter were selected. The expressions of Syt1 in 6 mice brain regions of prelimbic cortex (PL), hippocampus (HIP), amygdala (AMY), accumbens nucleus (ACB), caudoputamen (CP) and ventral tegmental area (VTA) were detected by Immunofluorescence staining. Nine 8-week-old male Syt1+/-mice and ten WT mice were selected as controls. The anxiety-like behaviors of adult Syt1+/- mice and WT mice were detected by open field test, elevated plus maze test and forced swim test. In addition, five 8-week-old male Syt1+/-mice and five WT mice were selected to detect the glutamate content in prelimbic cortex, hippocampus and amygdala. Results: Compared with WT mice, the number of Syt1 positive cells in PL, HIP, AMY, ACB, CP and VTA were decreased significantly in Syt1+/- mice (Pï¼0.01); Syt1+/- mice had less total movement distance in open field test (Pï¼0.01), more preference for peripheral area (Pï¼0.01) and less desire to explore the central platform (Pï¼0.01), while Syt1+/- mice preferred to stay in a closed and safe environment (Pï¼0.01); the number (Pï¼0.05) and the time spent in open-arm explorations (Pï¼0.01) were reduced significantly; the immobile time of Syt1+/- mice was increased in the forced swim test (Pï¼0.01). Meanwhile, the concentration of glutamate in the amygdala of Syt1+/- mice was increased significantly (Pï¼0.01). Conclusion: Syt1 gene knockout leads to significant anxiety-like behavior in mice, which is deduced that related to the increase of glutamate content in the amygdala.
Assuntos
Tonsila do Cerebelo , Ansiedade , Animais , Comportamento Animal , Técnicas de Inativação de Genes , Ácido Glutâmico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Intraplantar injection of formalin produces persistent spontaneous nociception and hyperalgesia. The underlying mechanism, however, remains unclear. The present study was, therefore, designed to determine the roles of peripheral group III metabotropic glutamate receptors (mGluRs) in formalin-evoked spontaneous nociception. Pre-treatment with intraplantar injections of L-serine-O-phosphate (L-SOP), a group III mGluRs agonist, significantly inhibited formalin-induced nociceptive behaviours and decreased Fos production in the spinal dorsal horn. The inhibitory effects of L-SOP were abolished completely by pre-treatment with the group III mGluR antagonist (RS)-a-methylserine-O-phosphate (M-SOP). These data suggest that the activation of group III mGluRs in the periphery may play a differential role in formalin-induced nociception. In addition, L-SOP decreased the formalin-induced upregulation of tumour necrosis factor-α (TNF-α) as well as interleukine-1ß (IL-1ß) expression in the spinal cord, suggesting that activation of peripheral group III mGluRs reduces formalin-induced nociception through inhibition of the pro-inflammatory cytokines in the spinal cord. Therefore, the agonists acting peripheral group III mGluRs possess therapeutic effectiveness in chronic pain.
Assuntos
Receptores de Glutamato Metabotrópico , Animais , Formaldeído/toxicidade , Nociceptividade , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Medula Espinal/metabolismoRESUMO
Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, have been widely used to lower cholesterol and prevent cardiovascular diseases. Recent preclinical and clinical studies have shown that statins exert beneficial effects in the management of breast cancer, while the underlying mechanisms remain to be elucidated. Herein, we sought to investigate the effect of statins on the expression of pituitary tumor-transforming gene 1 (PTTG1), a critical gene involved in human breast cancer invasion and metastasis. Our results showed that PTTG1 is highly expressed in malignant Hs578T and MDA-MB-231 breast cancer cell lines as compared with normal or less malignant breast cancer cells. Furthermore, we found that the expression of PTTG1 was markedly suppressed by lipophilic statins, such as simvastatin, fluvastatin, mevastatin, and lovastatin, but not by hydrophilic pravastatin. In a dose and time dependent manner, simvastatin suppressed PTTG1 expression by decreasing PTTG1 mRNA stability in MDA-MB-231 cells. Both siRNA-mediated knockdown of PTTG1 expression and simvastatin treatment markedly inhibited MDA-MB-231 cell invasion, MMP-2 and MMP-9 activity, and the expression of PTTG1 downstream target genes, while ectopic expression of PTTG1 promoted cancer cell invasion, and partly reversed simvastatin-mediated inhibition of cell invasion. Mechanistically, we found that inhibition of PTTG1 expression by simvastatin was reversed by geranylgeranyl pyrophosphate, but not by farnesyl pyrophosphate, suggesting the involvement of geranylgeranyl synthesis in regulating PTTG1 expression. Our results identified statins as novel inhibitors of PTTG1 expression in breast cancer cells and provide mechanistic insights into how simvastatin prevent breast cancer metastasis as observed in recent preclinical and clinical studies.
RESUMO
Cognitive function declines during the aging process, meanwhile, gut microbiota of the elderly changed significantly. Although previous studies have reported the effect of gut microbiota on learning and memory, all the reports were based on various artificial interventions to change the gut microbiota without involvement of aging biological characteristics. Here, we investigated the effect of aged gut microbiota on cognitive function by using fecal microbiota transplantation (FMT) from aged to young rats. Results showed that FMT impaired cognitive behavior in young recipient rats; decreased the regional homogeneity in medial prefrontal cortex and hippocampus; changed synaptic structures and decreased dendritic spines; reduced expression of brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartate receptor NR1 subunit, and synaptophysin; increased expression of advanced glycation end products (AGEs) and receptor for AGEs (RAGE). All these behavioral, brain structural and functional alterations induced by FMT reflected cognitive decline. In addition, FMT increased levels of pro-inflammatory cytokines and oxidative stress in young rats, indicating that inflammation and oxidative stress may underlie gut-related cognitive decline in aging. This study provides direct evidence for the contribution of gut microbiota to the cognitive decline during normal aging and suggests that restoring microbiota homeostasis in the elderly may improve cognitive function.
Assuntos
Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Microbioma Gastrointestinal/fisiologia , Hipocampo/metabolismo , Aprendizagem , Envelhecimento/fisiologia , Animais , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Masculino , RatosRESUMO
Silent Information Regulator 1 (SIRT1), an NAD+-dependent deacetylase, contributes to the neuroprotective effect. However, intracellular signaling pathways that affect SIRT1 function remain unknown. It is well known that N-methyl-D-aspartate (NMDA) receptor activation induces calcium influx which then activates PKC, and SIRT1 is a mRNA target for HuR protein. We hypothesize that Ca2+-PKC-HuR-SIRT1 pathway modulates SIRT1 function. The present study is to investigate the potential pathway of SIRT1 in the SH-SY5Y cell line as an in vitro model of NMDA-induced neurotoxicity. The results showed that: (1) SIRT1 levels were downregulated in NMDA model; (2) NMDA induced an increase in serine phosphorylation of HuR, while inhibition of serine phosphorylation of HuR increased SIRT1 levels, promoting cell survival; (3) PKC inhibitor (Gö 6976) reversed NMDA insults and also suppressed serine phosphorylation of HuR; (4) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, fully reversed NMDA insults and also inhibited PKC activity evoked by NMDA. These results indicate that intracellular elevated Ca2+ activates PKC, which phosphorylates HuR and then promotes SIRT1 mRNA decay and subsequent neuronal death in NMDA model. Therefore, the study suggests that inhibition of Ca2+-PKC-HuR-SIRT1 pathway could be an effective strategy for preventing certain neurological diseases related to NMDA excitotoxicity.
Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Sirtuína 1/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Proteína Semelhante a ELAV 1/metabolismo , Humanos , Neurônios/enzimologia , Neurônios/patologia , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/patologia , Fosforilação , Proteína Quinase C/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina , Sirtuína 1/genéticaRESUMO
Organic framework polymers have attracted much interest due to the enormous potential design space offered by the atomically precise spatial assembly of organic molecular building blocks. The morphology control of organic frameworks is a complex issue that hinders the development of organic frameworks for practical applications. Biomimetic self-assembly is a promising approach for designing and fabricating multiple-functional nanoarchitectures. A bioinspired hollow flower-like organic framework nanosphere heterostructure comprised of carbon nitride and polydopamine (g-C3N4@PDA) is successfully synthesized via a mild and green method. This heterostructure can effectively avoid the agglomeration of nanosheets to better access the hollow nanospheres with high open-up specific surface area. The electron delocalization of g-C3N4 and PDA under visible light can largely promote photoelectron transfer and enhance the photocatalytic activity of the g-C3N4@PDA. Furthermore, the g-C3N4@PDA can effectively enhance the generation of reactive oxygen species under irradiation, which can lead to cell apoptosis and enhance the performance for cancer therapy. Therefore, the as-prepared g-C3N4@PDA provides a paradigm of highly efficient photocatalyst that can be used as nanomedicine toward cancer therapy. This study could open up a new avenue for exploiting more other potential hollow nanosphere organic frameworks.
Assuntos
Biomimética , Nanosferas/química , Compostos Orgânicos/química , Fotoquímica/métodos , Catálise , Química Orgânica , Elétrons , Grafite , Humanos , Hidrogênio/química , Indóis/química , Células MCF-7 , Nitrilas/química , Compostos de Nitrogênio , Polímeros/química , Espécies Reativas de Oxigênio/químicaRESUMO
Matrix metalloproteinase-9 (MMP-9, Gelatinase B), an extracellular-acting Zn2+-dependent endopeptidase, are involved in brain pathologies including ischemia, glioma, and epilepsy. Recent studies suggested that MMP-9 plays an important role in neuronal plasticity, specifically in learning and memory. To determine whether and how MMP-9 plays role in alcohol-related behaviors, male Sprague-Dawley (SD) rats were subjected to chronic intermittent ethanol (CIE) exposure for 4 weeks, following which we collected tissue samples from the hippocampus, medial prefrontal cortex (mPFC), and amygdala at different stages (acute and chronic exposure) during alcohol exposure. Real-time PCR and western blot assays were used to detect changes in the mRNA and protein expression of MMP-9. Our results indicated that both acute and chronic alcohol exposure induced up-regulation of MMP-9 mRNA levels in the hippocampus and mPFC, but not in the amygdala. Furthermore, acute and chronic alcohol exposure up regulated the expression of total MMP-9 and active MMP-9 in these two brain regions. Moreover, the increase of active MMP-9 expression was larger than those in total MMP-9 expression. Immunoprecipitation analyses identified potential MMP-9-interacting proteins, including Itgb1, Src, Eef1a2, tubulin, actin, and histone H2B. These results demonstrate that both acute and CIE exposure induced increases in MMP-9 expression in the mPFC and hippocampus, suggesting that MMP-9 plays a key role in chronic alcohol exposure and dependence.
Assuntos
Etanol/farmacologia , Hipocampo/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Córtex Pré-Frontal/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Masculino , Metaloproteinase 9 da Matriz/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para CimaRESUMO
Humanin (HN) is a novel 24-amino acid peptide that protects neurons against N-methyl-d-aspartate (NMDA)-induced toxicity. However, the contribution of the different mitogen-activated protein kinases (MAPKs) signals to HN neuroprotection against NMDA neurotoxicity remains unclear. The present study was therefore aimed to investigate neuroprotective mechanisms of HN. We analyzed intracellular Ca2+ levels, reactive oxygen species (ROS) production, and the MAPKs signal transduction cascade using an in vitro NMDA-mediated excitotoxicity of cortical neurons model. Results showed that: (1) HN attenuated NMDA-induced neuronal insults by increasing cell viability, decreasing lactate dehydrogenase (LDH) release, and increasing cell survival; (2) HN reversed NMDA-induced increase in intracellular calcium; (3) pretreatment by HN or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, decreased ROS generation after NMDA exposure; (4) administration of HN or N-Acetyl-l-cysteine (NAC), a ROS scavenger, inhibited NMDA-induced JNK and p38 MAPK activation. These results indicated that HN reduced intracellular elevation of Ca2+ levels, which, in turn, inhibited ROS generation and subsequent JNK and p38 MAPK activation that are involved in promoting cell survival in NMDA-induced excitotoxicity. Therefore, the present study suggests that inhibition of ROS-dependent JNK/p38 MAPK signaling pathway serves an effective strategy for HN neuroprotection against certain neurological diseases.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , N-Metilaspartato/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
With the development of biotechnology, the detection of cancer biomarkers has been a promising approach for cancer diagnosis and therapy. Herein, we reported a DNA octahedron-based fluorescence nanoprobe, which was capable of detecting and imaging of two kinds of tumor-related mRNAs in living cells simultaneously. The DNA nanoprobe was constructed of eight single-stranded DNAs, in which two oligonucleotides (recognition sequences) were modified with quenchers (BHQ2 and BHQ3) and the adjacent sequences were modified with fluorophores (Cy3 and Cy5), respectively. In the presence of targets, the recognition sequences could dissociate from the nanoprobe skeleton by strand displacement reaction and the fluorescence was recovered accordingly. With the modification of AS1411 aptamer, the nanoprobe could internalize cancer cells more efficiently and distinguish cancer cells from normal cells. In addition, the nanoprobe exhibited good stability, biocompatibility, selectivity, and responded quickly to the targets as well. The DNA nanoprobe was designed in the formation of octahedron and may provide an inspiration for multidetection of cancer biomarkers based on the DNA nanotechnology.
Assuntos
Neoplasias da Mama/diagnóstico por imagem , DNA/química , Corantes Fluorescentes/química , Nanopartículas/química , Nanotecnologia , Imagem Óptica , RNA Mensageiro/análise , Linhagem Celular Tumoral , Feminino , Humanos , Cinética , Células MCF-7RESUMO
Temozolomide (TMZ) is a drug that has been demonstrated to improve the survival time of patients with glioblastoma multiforme (GBM) when administered with concomitant radiotherapy. However, chemoresistance is one of the major obstacles in the treatment of GBM. In the present study, an MTT assay and flow cytometry were used to demonstrate that chlorotoxin-like toxin in the venom of the scorpion Buthus martensii Kirsch (BmK CT) markedly inhibited cell proliferation and induced apoptosis in U251 cells when combined with TMZ. In combination with TMZ, BmK CT exhibited a significant and synergistic anti-tumor effect by inhibiting protein kinase B (AKT) independently and triggering the apoptosis signaling cascade in vitro. Furthermore, BmK CT increased the expression of phosphatase and tensin homolog at the transcriptional level, which is a key negative regulator of the AKT signaling pathway. The results of the present study demonstrated that BmK CT enhanced the sensitivity of TMZ-induced U251 cell apoptosis through the downregulation of phosphorylated AKT levels, suggesting that BmK CT and TMZ combination therapy may be a novel approach for glioma therapy.
RESUMO
Silent information regulator 1 (SIRT1), an NAD+-dependent deacetylase, is involved in the regulation of gene transcription, energy metabolism, and cellular aging and has become an important therapeutic target across a range of diseases. Recent research has demonstrated that SIRT1 possesses neuroprotective effects; however, it is unknown whether it protects neurons from NMDA-mediated neurotoxicity. In the present study, by activation of SIRT1 using resveratrol (RSV) in cultured cortical neurons or by overexpression of SIRT1 in SH-SY5Y cell, we aimed to evaluate the roles of SIRT1 in NMDA-induced excitotoxicity. Our results showed that RSV or overexpression of SIRT1 elicited inhibitory effects on NMDA-induced excitotoxicity including a decrease in cell viability, an increase in lactate dehydrogenase (LDH) release, and a decrease in the number of living cells as measured by CCK-8 assay, LDH test, and Calcein-AM and PI double staining. RSV or overexpression of SIRT1 significantly improved SIRT1 deacetylase activity in the excitotoxicity model. Further study suggests that overexpression of SIRT1 partly suppressed an NMDA-induced increase in p53 acetylation. These results indicate that SIRT1 activation by either RSV or overexpression of SIRT1 can exert neuroprotective effects partly by inhibiting p53 acetylation in NMDA-induced neurotoxicity.
Assuntos
Sirtuína 1/biossíntese , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Humanos , N-Metilaspartato/toxicidade , Ratos , Ratos Wistar , Resveratrol , Transdução de Sinais , Estilbenos/farmacologia , TransfecçãoRESUMO
BACKGROUND: Toxoplasma gondii is an opportunistic protozoan closely associated with AIDS and vertical transmission. T. gondii actin depolymerizing factor (TgADF) plays an important role in actin cytoskeleton remodeling, and it is required to invade host cells. TgADF was a promising vaccine candidate. To observe the immunological changes and protective efficacy of recombinant TgADF protein (rTgADF) against T. gondii infection, we optimized the intranasal immunization dose of rTgADF and analyzed the survival rate and tachyzoite loads in mouse tissues after oral challenge with T. gondii tachyzoites. RESULTS: rTgADF was prepared, purified, and combined with mouse anti-His antibody and rabbit anti-T. gondii serum. After intranasal immunization with 10 µg, 20 µg, 30 µg, or 40 µg of rTgADF, the 30-µg group elicited high levels of secretory IgA (sIgA) in nasal, intestinal, and vesical washes, raised IgG titres in the sera, strong proliferation of splenocytes, and increased secretion of IL-2 and IFN-γ when compared with the control group. When the mice were orally challenged with T. gondii, an increase in the survival rate (36.36 %) and a decrease in the tachyzoite loads in the liver (67.77 %) and brain (51.01 %) were observed. CONCLUSIONS: Our findings demonstrate that intranasal immunization with rTgADF can simultaneously trigger mucosal and systemic immune responses and protect the mice against T. gondii infection.
Assuntos
Antígenos de Protozoários/uso terapêutico , Destrina/uso terapêutico , Imunidade nas Mucosas , Linfócitos/imunologia , Proteínas Recombinantes/uso terapêutico , Toxoplasma/imunologia , Toxoplasmose/terapia , Administração Intranasal , Animais , Antígenos de Protozoários/imunologia , Proliferação de Células , Células Cultivadas , Destrina/imunologia , Feminino , Humanos , Soros Imunes/administração & dosagem , Imunoglobulina A/sangue , Linfócitos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Toxoplasmose/imunologiaRESUMO
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Assuntos
Fosfoglicerato Mutase/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Administração Intranasal , Animais , Encéfalo/parasitologia , Células Cultivadas , Citocinas/sangue , Avaliação de Medicamentos , Feminino , Imunidade nas Mucosas , Imunoglobulina A Secretora/análise , Imunoglobulina G/sangue , Fígado/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/imunologia , Fosfoglicerato Mutase/genética , Proteínas de Protozoários/genética , Vacinas Protozoárias/administração & dosagem , Proteínas Recombinantes/imunologia , Baço/imunologia , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/sangue , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17) and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17) was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8(+) T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05) of mice after challenge infection with the virulent T. gondii RH strain (Type I), compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis.
Assuntos
DNA de Protozoário/genética , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Vacinas de DNA/imunologia , Fatores de Virulência/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , DNA de Protozoário/imunologia , DNA Recombinante/genética , DNA Recombinante/imunologia , Feminino , Imunoglobulina G/sangue , Injeções Intramusculares , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Células Th1/imunologia , Toxoplasmose Animal/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Fatores de Virulência/genéticaRESUMO
OBJECTIVE: Thrombomodulin is highly expressed on the lumenal surface of vascular endothelial cells (ECs) and possesses potent anticoagulant, antifibrinolytic, and anti-inflammatory activities in the vessel wall. However, the regulation of thrombomodulin expression in ECs remains largely unknown. APPROACHES AND RESULTS: In this study, we characterized nuclear receptor 4A family as a novel regulator of thrombomodulin expression in vascular ECs. We demonstrated that both nuclear receptors 4A, Nur77 and Nor1, robustly increase thrombomodulin mRNA and protein levels in human vascular ECs and in mouse liver tissues after adenovirus-mediated transduction of Nur77 and Nor1 cDNAs. Moreover, Nur77 deficiency and knockdown of Nur77 and Nor1 expression markedly attenuated the basal and vascular endothelial growth factor165-stimulated thrombomodulin expression. Mechanistically, we found that Nur77 and Nor1 increase thrombomodulin expression by acting through 2 different mechanisms. We showed that Nur77 barely affects thrombomodulin promoter activity, but significantly increases thrombomodulin mRNA stability, whereas Nor1 enhances thrombomodulin expression mainly through induction of Kruppel-like factors 2 and 4 in vascular ECs. Furthermore, we demonstrated that both Nur77 and Nor1 significantly increase protein C activity and inhibit tumor necrosis factor α-induced prothrombotic effects in human ECs. Deficiency of Nur77 increases susceptibility to arterial thrombosis, whereas enhanced expression of Nur77 and Nor1 protects mice from arterial thrombus formation. CONCLUSIONS: Our results identified nuclear receptors 4A as novel regulators of thrombomodulin expression and function in vascular ECs and provided a proof-of-concept demonstration that targeted increasing expression of Nur77 and Nor1 in the vascular endothelium might represent a novel therapeutic approach for the treatment of thrombotic disorders.
Assuntos
Estenose das Carótidas/prevenção & controle , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Trombomodulina/metabolismo , Trombose/prevenção & controle , Animais , Coagulação Sanguínea , Estenose das Carótidas/genética , Estenose das Carótidas/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Regiões Promotoras Genéticas , Proteína C/metabolismo , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais , Trombomodulina/genética , Trombose/genética , Trombose/metabolismo , Fatores de Tempo , Transdução Genética , Transfecção , Regulação para CimaRESUMO
Toxoplasma gondii can infect humans and wildlife, sometimes causing serious clinical presentations. Currently, no viable vaccine or effective drug strategies exist to prevent and control toxoplasmosis. T. gondii malate dehydrogenase (TgMDH) is a crucial enzyme in cellular redox reactions and has been shown to be an immunogenic compound that could be a potential vaccine candidate. Here, we investigate the protective efficacy of recombinant TgMDH (rTgMDH) against T. gondii infection in BALB/c mice. All mice were vaccinated via the nasal route. We determined the optimal vaccination dose by monitoring systemic and mucosal immune responses. The results showed that mice vaccinated with 30 µg of rTgMDH produced the highest antibody titers in serum, a strong lymphoproliferative response, marked increases in their levels of IL-2 and IFN-γ, and significantly greater levels of specific secretory IgA (sIgA) in mucosal washes. In addition, the vaccinated mice were orally challenged with tachyzoites of the virulent T. gondii RH strain 2 weeks after the final vaccination. Compared to the control group, we found that vaccination with rTgMDH increased the survival rate of infected mice by 47% and also significantly reduced the tachyzoite loads in their liver (by 58%) and brain (by 41%). Therefore, the rTgMDH protein triggers a strong systemic and mucosal immune response and provides partial protection against T. gondii infection.
Assuntos
Malato Desidrogenase/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/enzimologia , Toxoplasmose Animal/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Encéfalo/parasitologia , Citocinas/imunologia , Feminino , Imunidade nas Mucosas , Imunoglobulina A Secretora/imunologia , Fígado/parasitologia , Malato Desidrogenase/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologiaRESUMO
BACKGROUND: Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis. Apical membrane antigen-1 (AMA1) and rhoptry neck protein (RON2, RON4) are involved in the invasion of T. gondii. METHODS: This study chemically synthesized peptides of TgAMA1, TgRON2 and TgRON4 that contained the T- and B-cell epitopes predicted by bioinformatics analysis. We evaluated the systemic response by proliferation, cytokine and antibody measurements as well as the mucosal response by examining the levels of antigen-specific secretory IgA (SIgA) in the nasal, vesical and intestinal washes obtained from mice after nasal immunization with single (AMA1, RON2, RON4) or mixtures of peptides (A1 + R2, A1 + R4, R2 + R4, A1 + R2 + R4). We also assessed the parasite burdens in the liver and brain as well as the survival of mice challenged with a virulent strain. RESULTS: The results showed that the mice immunized with single or mixed peptides produced effective mucosal and systemic immune responses with a high level of specific antibody responses, a strong lymphoproliferative response and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2) and IL-4 production. These mice also elicited partial protection against acute and chronic T. gondii infection. Moreover, our study indicated that mixtures of peptides, especially the A1 + R2 mixture, were more powerful and efficient than any other single peptides. CONCLUSIONS: These results demonstrated that intranasal immunisation with peptides of AMA1, RON2 and RON4 containing T- and B-cell epitopes can partly protect mice against toxoplasmosis, and a combination of peptides as a mucosal vaccine strategy is essential for future Toxoplasma vaccine development.
Assuntos
Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/metabolismo , Peptídeos/imunologia , Vacinas Protozoárias/imunologia , Toxoplasmose Animal/prevenção & controle , Administração Intranasal , Animais , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Imunoglobulina A Secretora , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/administração & dosagem , Baço/citologiaRESUMO
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.