RESUMO
COVID-19 is now often moderate and self-recovering, but in a significant proportion of individuals, it is severe and deadly. Determining whether individuals are at high risk for serious disease or death is crucial for making appropriate treatment decisions. We propose a computational method to estimate the mortality risk for patients with COVID-19. To develop the model, 4,711 reported cases confirmed as SARS-CoV-2 infections were used for model development. Our computational method was developed using ensemble learning in combination with a genetic algorithm. The best-performing ensemble model achieves an AUCROC (area under the receiver operating characteristic curve) value of 0.7802. The best ensemble model was developed using only 10 features, which means it requires less medical information so that the diagnostic cost may be reduced while the prognostic time may be improved. The results demonstrate the robustness of the used method as well as the efficiency of the combination of machine learning and genetic algorithms in developing the ensemble model.
RESUMO
The introduction of digital technology in the healthcare industry is marked by ongoing difficulties with implementation and use. Slow progress has been made in unifying different healthcare systems, and much of the globe still lacks a fully integrated healthcare system. As a result, it is critical and advantageous for healthcare providers to comprehend the fundamental ideas of AI in order to design and deliver their own AI-powered technology. AI is commonly defined as the capacity of machines to mimic human cognitive functions. It can tackle jobs with equivalent or superior performance to humans by combining computer science, algorithms, machine learning, and data science. The healthcare system is a dynamic and evolving environment, and medical experts are constantly confronted with new issues, shifting duties, and frequent interruptions. Because of this variation, illness diagnosis frequently becomes a secondary concern for healthcare professionals. Furthermore, clinical interpretation of medical information is a cognitively demanding endeavor. This applies not just to seasoned experts, but also to individuals with varying or limited skills, such as young assistant doctors. In this paper, we proposed the comparative analysis of various state-of-the-art methods of deep learning for medical imaging diagnosis and evaluated various important characteristics. The methodology is to evaluate various important factors such as interpretability, visualization, semantic data, and quantification of logical relationships in medical data. Furthermore, the glaucoma diagnosis system is discussed in detail via qualitative and quantitative approaches. Finally, the applications and future prospects were also discussed.