RESUMO
BACKGROUND: Heat stroke (HS) is a physically dysfunctional illness caused by hyperthermia. Lung, as the important place for gas-exchange and heat-dissipation organ, is often first to be injured. Lung injury caused by HS impairs the ventilation function of lung, which will subsequently cause damage to other tissues and organs. Nevertheless, the specific mechanism of lung injury in heat stroke is still unknown. METHODS: Rat lung tissues from controls or HS models were harvested. The gene expression profile was identified by high-throughput sequencing. DEGs were calculated using R and validated by qRT-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and cell-enrichment were performed using differential expression genes (DEGs). Finally, lung histopathology was accessed by H&E staining. RESULTS: About 471 genes were identified to be DEGs, of which 257 genes were up-regulated, and 214 genes were down-regulated. The most up-regulated and down-regulated DEGs were validated by qRT-PCR, which confirmed the tendency of expression. GO, KEGG, and protein-protein interaction (PPI)-network analyses disclosed DEGs were significantly enriched in leukocyte migration, response to lipopolysaccharide, NIK/NF-kappaB signaling, response to reactive oxygen species, response to heat, and the hub genes were Tnf, Il1b, Cxcl2, Ccl2, Mmp9, Timp1, Hmox1, Serpine1, Mmp8 and Csf1, most of which were closely related to inflammagenesis and oxidative stress. Finally, cell-enrichment analysis and histopathologic analysis showed Monocytes, Megakaryotyes, and Macrophages were enriched in response to heat stress. CONCLUSIONS: The present study identified key genes, signal pathways and infiltrated-cell types in lung after heat stress, which will deepen our understanding of transcriptional response to heat stress, and might provide new ideas for the treatment of HS.
Assuntos
Citocinas/genética , Golpe de Calor/genética , Pulmão/metabolismo , Estresse Oxidativo/genética , Pneumonia/genética , Transcriptoma , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Golpe de Calor/metabolismo , Golpe de Calor/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Masculino , Pneumonia/metabolismo , Pneumonia/patologia , Mapas de Interação de Proteínas , Ratos Wistar , Transdução de SinaisRESUMO
Expanding the application range of flame-retardant polymer biocomposites remains a huge challenge for a sustainable society. Despite largely enhanced flame retardancy, until now the resultant poly(lactic acid) (PLA) composites still suffer reduced tensile strength and impact toughness due to improper material design strategies. We, herein, demonstrate the design of a green flame retardant additive (ammonium polyphosphate (APP)@cellulose nanofiber (CNF)) via using the cellulose nanofibers (CNFs) as the green multifunctional additives hybridized with ammonium polyphosphate (APP). The results show that PLA composite with 5 wt % loading of APP@CNF can pass the UL-94 V-0 rating, besides a high limited oxygen index of 27.5%, indicative of a significantly enhanced flame retardancy. Moreover, the 5 wt % of APP@CNF enables the impact strength (σi) of the PVA matrix to significantly improve from 7.63 to 11.8 kJ/m2 (increase by 54%), in addition to a high tensile strength of 50.3 MPa for the resultant flame-retardant PLA composite. The enhanced flame retardancy and mechanical strength performances are attributed to the improved dispersion of APP@CNF and its smaller phase size within the PLA matrix along with their synergistic effect between APP and CNF. This work opens up a facile innovative methodology for the design of high-performance ecofriendly flame retardants and their advanced polymeric composites.