Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(41): 14830-14836, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791872

RESUMO

Inorganic metal chalcohalides, as significant semiconductor materials, have emerged as promising candidates for photoelectric applications. Herein, a new type of quaternary chalcohalide, [Ba4X][In19S32] (X = Cl, Br), has been discovered using the high-temperature halide salt flux method. Single-crystal X-ray diffraction analysis reveals that they are isostructural and crystallize in the tetragonal space group I41/amd (no. 141) featuring the octahedral hole formed by six [InS4]5- tetrahedra filled with a [ClBa4]7+ polycation, surrounded by a three-dimensional covalent framework formed by interconnecting [InS6]9- octahedra through corner-sharing and edge-sharing. Moreover, [Ba4Cl][In19S32] and [Ba4Br][In19S32] exhibit wide optical bandgaps of 2.70 eV and 2.46 eV, respectively, and moderate birefringences (0.044 @ 2100 nm and 0.042 @ 2100 nm, respectively). Specifically, [Ba4X][In19S32] (X = Cl, Br) display remarkable photocurrent responses under simulated solar-light illumination, implying their potential for photocatalytic applications. Theoretical calculations were employed to understand the interrelationship between the optical properties and electronic structure. The study on the synthesis and structure-property relationship analysis of inorganic metal chalcohalides provides new insight into the exploration of promising photoelectric materials.

2.
Inorg Chem ; 62(36): 14739-14747, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648654

RESUMO

Thioarsenites(III) are an advanced functional material platform owing to the stereochemically active lone pair cations. In this paper, two novel quaternary thioarsenites(III), AgMAsS3 (M = Cd, Hg), are successfully obtained by introducing double d10 cations. In the compounds, d10 cations show a variety of different coordination modes ([AgS4] and [HgS4] in AgHgAsS3 vs [AgS5] and [CdS6] in AgCdAsS3). As a result, AgHgAsS3 and AgCdAsS3 crystallize in the noncentrosymmetric Cc space group and centrosymmetric C2/c space group, respectively. The band gaps of AgHgAsS3 and AgCdAsS3 are determined experimentally as 1.90 and 2.20 eV, respectively. Meanwhile, title compounds exhibit strong photocurrent responses. Specifically, AgHgAsS3 has a large birefringence of 0.18 at 2100 nm and a moderate second harmonic generation of (0.5 × AgGaS2). Moreover, the origin of linear and nonlinear optical responses is investigated based on first-principles calculations. This study enriches the family of MI-MII-As-Q (M = Ag, Cu; MII = Zn, Cd, Hg; Q = chalcogen) chalcogenides and helps to understand and design other multifunctional optical materials.

3.
Dalton Trans ; 52(29): 10183-10189, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435681

RESUMO

Stability is a key factor that restricts the practical applications of metal-organic framework (MOF) materials. In this work, we report an ultrastable three-dimensional cage-like MOF, SrCu(HC3N3O3)2, constructed by a polydentate cyanurate ligand and two kinds of different metal nodes. A high ratio of coordination sites in organic ligands, specific coordination of strong acid with a strong base and weak acid with a weak base and double independent completed coordination networks endow SrCu(HC3N3O3)2 with outstanding thermal stability (up to 300 °C) and acid/alkali resistance (pH = 2-14). Moreover, SrCu(HC3N3O3)2 possesses the highest porosity up to 36.7% among cyanuric acid-based MOF materials and exhibits differentiated adsorption of C3H4 (63 cm3 g-1) and C3H6 (51 cm3 g-1). The breakthrough experiment further verified that efficient C3H4/C3H6 separation can be achieved under dynamic conditions by SrCu(HC3N3O3)2.

4.
Dalton Trans ; 52(20): 6915-6921, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37158594

RESUMO

Metal thiophosphates have outstanding properties for the generation of mid-infrared coherent light and are an emerging nonlinear optical material system. In this study, a new non-centrosymmetric (NCS) quaternary alkaline-earth metal thiophosphate, SrAgPS4, was obtained via a high-temperature solid-state method. The new compound crystallizes in the NCS Ama2 (No. 40) space group and features two-dimensional [AgPS4]2- layers consisting of alternately connected [PS4] and [AgS4] tetrahedra. SrAgPS4 exhibits a strong phase-matched second harmonic generation response (1.10 × AgGaS2 at 2100 nm) and a large band gap (2.97 eV). In addition, theoretical calculations reveal the intrinsic relationship between the electronic structure and optical properties. This work enriches and greatly promotes the research on infrared nonlinear optical materials based on thiophosphates.

5.
Inorg Chem ; 61(24): 9205-9212, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723505

RESUMO

A new noncentrosymmetric (NCS) quaternary sulfide, SrAgAsS4, was obtained via the strategy of aliovalent substitution based on centrosymmetric (CS) SrGa2S4. The new compound features two-dimensional [AgAsS4]2- layers, which are composed of alternately connected [AsS4] tetrahedra and [AgS4] tetrahedra. Importantly, SrAgAsS4 exhibits a strong phase-matched second-harmonic generation response (1.35 × AgGaS2 at 2100 nm) and has a suitable birefringence (0.15@2100 nm) and moderate band gap (2.31 eV). The first-principles calculations revealed the significant contribution of [AsS4] and [AgS4] tetrahedra to its optical properties. This work will promote the application of the aliovalent substitution strategy in the design of NCS-structure-based functional materials.

6.
Dalton Trans ; 51(12): 4728-4733, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35244121

RESUMO

Inorganic metal chalcohalides are significant semiconductive materials for photovoltaics, photodetetion and infrared optics. Thus it is considerably rewarding to develop a new synthetic strategy to provide more degrees of freedom for atomic coordination to tune the optical and electronic properties of metal chalcohalides. In this work, the mixed-anion strategy is performed to synthesize two new metal chalcohalides Cs2InPS4X2 (X = Cl, Br) with mixed-anion structure by the reaction of InPS4 and CsX. Single-crystal X-ray diffraction analysis shows that they are isostructural and crystallize in the centrosymmetric space group P21/n, consisting of zero-dimensional structure [In2P2S8X4]4- (X = Cl, Br) built from tetrahedral [PS4]3- and octahedral [InS4X2]7- (X = Cl, Br) through edge-sharing, with Cs cations filling in intervening voids. The UV-vis-NIR diffuse reflectance spectroscopy measurement reveals that Cs2InPS4Cl2 and Cs2InPS4Br2 exhibit large optical bandgaps of 3.21 eV and 3.12 eV, respectively. The electronic structure calculations show that the bandgap mainly originates from the [InS4X2]7- (X = Cl, Br) mixed-anion groups. First-principles calculations indicate that the birefringence of Cs2InPS4Cl2 and Cs2InPS4Br2 is ∼0.08 and ∼0.05 at 2090 nm, respectively. Furthermore, thermal analysis reveals that the Cs2InPS4X2 (X = Cl, Br) are thermostable up to 400 °C. This discovery enriches the structural diversity of inorganic chalcohalides and provides an insight for the exploration of new semiconductive materials.

7.
Inorg Chem ; 60(23): 18370-18378, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767717

RESUMO

The continuous exploration of multinary chalcogenide semiconductors has provided a variety of new functional materials. In this paper, four new quaternary chalcogenides AHgPS4 (A+ = Na+, K+, Rb+, Cs+) have been prepared by solid-state syntheses. These findings complement the lack of research on this quaternary system. Influenced by the size effect of cations and the coordination mode of Hg, the four compounds crystallize in four different space groups [NaHgPS4, P4̅n2; KHgPS4, Pnn2; RbHgPS4, P21/n; CsHgPS4, P212121] and show an interesting evolution from a 3D framework structure to a 1D chain structure. Moreover, all of these compounds feature noncentrosymmetric (NCS) structures except for RbHgPS4. The materials exhibit wide band gaps of 2.7 eV < Eg < 3.0 eV. The NCS- related second-harmonic-generation (SHG) property of NaHgPS4 and KHgPS4 was also studied. They display strong powder SHG responses (3.14 × AgGaS2 for NaHgPS4; 4.15 × AgGaS2 for KHgPS4), which indicate their intriguing potential as IR nonlinear-optical materials. Moreover, first-principles theoretical calculations were performed to understand the structure-property relationships of these materials.

8.
Inorg Chem ; 60(19): 14793-14802, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529425

RESUMO

Demands for IR birefringent materials are increasing due to the rapid developments of IR laser applications. Herein, two new chain tellurides ß-BaGa2Te4 and Ba5Ga2Ge3Te12 have been discovered. ß-BaGa2Te4 crystallizes in the orthorhombic space group Imma (no. 74) with unit cell constants of a = 23.813(3) Å, b = 11.9673(19) Å, and c = 6.7215(9) Å, while Ba5Ga2Ge3Te12 crystallizes in the monoclinic space group P21/c (no. 14) with unit cell constants of a = 13.6540(3) Å, b = 9.6705(2) Å, and c = 23.1134(7) Å. The structure of ß-BaGa2Te4 can be considered to be the antiparallel arrangement of one-dimensional (1D) [GaTe2] chains formed by edge-sharing GaTe4 tetrahedra, which are separated by Ba2+ cations. In the crystal structure of Ba5Ga2Ge3Te12, two kinds of 1D chains, namely chain 1 ∞1[(GaGe)3Te8] and chain 2 ∞1[(GaGe)2Te4], are stacked alternately and put together by the coulomb force with Ba2+ cations. In addition, First-principles calculations indicate that ß-BaGa2Te4 has a large birefringence, ∼0.325 at 2050 nm, derived from the superposition of the polarizabilities of GaTe4 tetrahedra, implying that it has potential as an IR birefringent material. This work may provide some guidance for exploring new IR birefringent crystals.

9.
ACS Appl Mater Interfaces ; 13(31): 37331-37338, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319689

RESUMO

Chalcogenides with diamond-like (DL) structures are a treasury of infrared nonlinear optical (NLO) materials. Here, a ternary Hg-based chalcogenide with a defect DL structure, Hg3P2S8, is synthesized by solid-state reaction. Driven by the highly distorted [HgS4] tetrahedra, this compound displays an interesting structural symmetry degradation from tetragonal to orthorhombic compared with its analogue Zn3P2S8. Meanwhile, the overall performances of Hg3P2S8 are quite remarkable, including a very strong phase-matchable second-harmonic generation (SHG) response (4.2 × AgGaS2), large band gap (2.77 eV), wide IR transparent range (0.45-16.7 µm), and high laser-induced damage threshold (4 × AGS). Furthermore, the theoretical analysis and local dipole moment calculations elucidate that the highly distorted [HgS4] tetrahedra contribute a lot to the enhancement of the SHG effect. This discovery will motivate the exploration of other DL Hg-based chalcogenides serving as high-performing mid-IR NLO materials.

10.
Inorg Chem ; 59(24): 18452-18460, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33256399

RESUMO

Metal chalcogenides play a critical role in the infrared (IR) nonlinear optical (NLO) field. However, Eu-based chalcogenide-type IR NLO materials are still scarce up to now. In this paper, two new quaternary Eu-based chalcogenides, EuHgGeSe4 and EuHgSnS4, containing the "NLO active groups" [HgQ4]6- (Q = S, Se) and [GeSe4]4-/[SnS4]4- were synthesized through traditional high-temperature solid-state reactions. They possess noncentrosymmetric structures, crystallizing in the Ama2 space group, and exhibit strong phase-matchable second-harmonic-generation (SHG) responses (3.1× and 1.77× that of AgGaS2 for EuHgGeSe4 and EuHgSnS4, respectively). Meanwhile, the optical band gaps of EuHgGeSe4 (1.97 eV) and EuHgSnS4 (2.14 eV) were determined from UV-vis-NIR diffuse reflectance spectra. Differential scanning calorimetry (DSC) analyses reveal the congruent-melting behavior of EuHgGeSe4. Furthermore, structural analysis and theoretical calculations verify the critical driving effects of [HgQ4]6- tetrahedra on the strong SHG activity. The overall results demonstrate that EuHgGeSe4 and EuHgSnS4 are potential IR NLO materials.

11.
Inorg Chem ; 59(22): 16716-16724, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33100002

RESUMO

Highly polarizable mixed-anion structural building units (SBUs) have been demonstrated as promising candidates for high-performing optical crystals. In this work, two new mixed-anion SBUs of [GeOSe3] and [GeO3S] are first designed through partial isovalent substitution of chalcogen atoms by O atoms in the classical [GeQ4] (Q = S, Se) tetrahedra. On the basis of these SBUs, two new quaternary oxychalcogenides, Sr3Ge2O4Se3 and SrGe2O3S2, are successfully synthesized. Sr3Ge2O4Se3 crystallizes in the noncentrosymmetric space group R3m and possesses unique zero-dimensional [Ge2O4Se3]6- units consisting of highly distorted [GeOSe3] tetrahedra and [GeO4] tetrahedra through a shared O atom. It displays intriguing potential as an infrared nonlinear optical material with a wide band gap (2.96 eV) and moderate second harmonic generation intensity (0.8 × AgGaS2). SrGe2O3S2 belongs to the centrosymmetric space group P21/c and features 2∞[Ge2O3S2]2- layers formed by the corner-shared [GeO3S] tetrahedra. Moreover, the large birefringence of SrGe2O3S2 (calculated Δn = 0.22-0.17 from 0.4 to 4.0 µm) gives it a potential as a birefringent material. Theoretical calculations revealed the crucial effects of mixed-anion [GeOSe3] and [GeO3S] units on the moderate second harmonic generation response and large birefringence. The discovery of new mixed-anion SBUs of [GeOSe3] and [GeO3S] will guide the exploration of new functional oxychalcogenides.

12.
Chem Commun (Camb) ; 56(83): 12534-12537, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32945827

RESUMO

2D materials are gaining more and more interest owing to their promising applications in future electronic industry. Here, two new quasi-2D metal cyanurates, K4Cu3(C3N3O3)2X (X = Cl, Br), were grown and characterized for the first time. They belong to the trigonal P3[combining macron]m1 space group and feature an infinite layer, constructed by p-p conjugation in the (C3N3O3) planar six-membered-rings and d-p conjugation in the N-Cu-N linear chains. Moreover, they are indirect semiconductors with suitable bandgaps of 3.5 eV, locating between g-C3N4 and h-BN. The electronic states and anisotropic optical responses were also studied through theoretical calculations.

13.
Dalton Trans ; 49(37): 13060-13065, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32924042

RESUMO

A new quaternary chalcogenide Ba4HgAs2S10 has been successfully synthesized with the aid of a KI flux. The compound crystallizes in the space group C2/c (no. 9) of the monoclinic system [a = 22.7787(6) Å, b = 6.4712(2) Å, c = 25.0606(7) Å, ß = 90.101(2)° and Z = 8]. It is the first example of tetrahedral [AsS4]3- and linear [HgS2]2- units coexisting in a single compound. The [AsS4]3- tetrahedra and [HgS2]2- units are totally separated by Ba2+. The UV-visible diffuse reflectance spectrum reveals a large bandgap of 2.98 eV for Ba4HgAs2S10 and DSC measurement demonstrates the incongruent melting nature of the compound. Moreover, based on first-principles calculations, Ba4HgAs2S10 is a direct bandgap semiconductor with the optical property related to the electron transition from the S-3p orbital to As-4p and Ba-5d orbitals.

14.
BMC Cancer ; 20(1): 537, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517666

RESUMO

BACKGROUND: Our goal was to clarify the comparison between elective neck dissection (END) and the wait-and-see policy in neck management for cT1N0 buccal squamous cell carcinoma (SCC). METHODS: This was a retrospective comparison of 175 prospectively enrolled patients with cT1N0 buccal SCC. The patients were divided into two groups based on the nonrandomized management of the neck: 125 patients received END, and 50 patients were exposed to the wait-and-see policy. The main study endpoints were locoregional control (LRC) and disease-specific survival (DSS). Patients were asked to complete the shoulder domain in the University of Washington quality of life questionnaire, version 4, 1 year postoperatively. RESULTS: Ten of the patients undergoing END developed recurrence, and the 5-year LRC rate was 92%. Five patients undergoing the wait-and-see policy developed recurrence, and the 5-year LRC rate was 90%. The difference was not significant (p = 0.668). There were 6 deaths in patients undergoing END, and the 5-year DSS rate was 94%. There were 3 deaths in patients undergoing the wait-and-see policy, and the 5-year DSS rate was 94%; the difference was not significant (p = 0.777). The mean shoulder scores of patients undergoing END and the wait-and-see policy were 93.9 and 100, respectively, and the difference was not significant (p = 0.284). CONCLUSION: Elective neck dissection does not carry a survival benefit compared to the wait-and-see policy, and it is not suggested for patients with cT1N0 buccal SCC.


Assuntos
Carcinoma de Células Escamosas/cirurgia , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Neoplasias Bucais/cirurgia , Esvaziamento Cervical/estatística & dados numéricos , Conduta Expectante/estatística & dados numéricos , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Procedimentos Cirúrgicos Eletivos/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Esvaziamento Cervical/mortalidade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Estudos Retrospectivos
15.
Inorg Chem ; 59(11): 7614-7621, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412240

RESUMO

The two functional chalcogenides K2MnGe2Se6 and Na2HgSn2Se6, featuring a straight-chain structure, have been successfully prepared and fully characterized. K2MnGe2Se6 shows paramagnetic behavior. The birefringence of Na2HgSn2Se6 is as large as 0.3107 and derives from the superposition of the polarizabilities of its fundamental building blocks, on the basis of first-principles calculations. Moreover, the flexible framework of the A2MIIMIV2Se6 family enables a variety of heterogeneous substitutions and thus offers possible birefringence tunability, which may inspire the design and exploratory synthesis of IR birefringent materials.

16.
Dalton Trans ; 49(5): 1370-1374, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909775

RESUMO

The stereochemically active lone pair (SCALP) effect of Pb2+ plays a vital role in enhancing the nonlinear optical response and engineering the band gap of lead-based materials with intriguing properties. Herein, we combined SCALP Pb2+ cations and π-conjugated (HC3N3O3)2- anions into one structure to investigate the tunable optical properties. Two lead cyanurates, namely, Pb3(HC3N3O3)2(OH)2 (I) and its partly cadmium-substituted analog Pb2Cd(HC3N3O3)2(OH)2 (II) were grown by the mild hydrothermal method. They exhibited greatly narrowed bandgaps and enhanced optical anisotropy resulting from the SCALP effect. In addition, divergent optical responses induced from the involved Pb (6s26p2) and Cd (4d105s2) were elaborated by a combination of experimental and theoretical analyses.

17.
Dalton Trans ; 48(47): 17620-17625, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755500

RESUMO

Two new rare-earth-based chalcogenides EuCdGeQ4 (Q = S, Se) have been designed and constructed by using Eu2+ and the classical NLO-active SBUs of [CdQ4] and [GeQ4]. They crystallize in a non-centrosymmetric Ama2 (no. 40) space group. Benefiting from the synergistic effects of [GeQ4] and highly distorted [CdQ4] tetrahedra, both compounds possess type-I phase-matching behaviour and large powder second harmonic generation (SHG) effects at 2.09 µm (2.6 and 3.8 × AgGaS2 for sulfide and selenide), as well as large direct band gaps (2.5 eV and 2.25 eV). Besides, they melt congruently at relatively low temperatures (997 °C for EuCdGeS4 and 882 °C for EuCdGSe4), which is suitable for bulk crystal growth by the Bridgman method. In addition, their electronic structures and some optical coefficients are calculated by first-principles.

18.
Dalton Trans ; 48(38): 14246-14250, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31524911

RESUMO

The combination of different types of π-conjugated anions into one structure can lead to multifunctional materials with intriguing properties. Herein, we successfully developed a new mixed anion compound, Ba2(C3N3O3)(CNO) (I), containing two types of π-conjugated groups, planar (C3N3O3)3- six-membered rings and linear (CNO)- units, for the first time. The compound I exhibits the wide bandgap of 4.82 eV and high absorption coefficients in the wavelength range of 200-280 nm; this indicates that it is a potential optical detection material in the solar-blind region.

19.
Inorg Chem ; 58(15): 9553-9556, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31305999

RESUMO

The two new metal cyanurates Ba2M(C3N3O3)2 (M = Sr, Pb) were successfully grown by a solid-state cyclotrimerization reaction. The electronic energy bands of Ba2M(C3N3O3)2 are totally divergent in spite of their same structures and similar interlayer distances. Theoretical calculations show the narrowing band gap of Ba2Pb(C3N3O3)2 stems from the strong interaction between Pb 6p orbitals and anti-π orbitals in (C3N3O3)3- groups.

20.
Dalton Trans ; 48(25): 9048-9052, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31180107

RESUMO

Ultraviolet (UV) transparent birefringent crystals are indeed indispensable for modern optoelectronics and polarizer devices. Herein, mixed alkali/alkali-earth metal hydroisocyanurates A2B(H2C3N3O3)4·nH2O (A = K, Rb, Cs; B = Mg, Ca; n = 4, 10) were synthesized and their thermal, vibrational and optical properties were characterized in detail. Although they crystallize in different crystallographic point groups, all compounds feature quasi-two-dimensional layered structures built by the 2∞[H2C3N3O3]- ribbons through hydrogen bonds, separated by water molecules and cations. Benefiting from the delocalized π-conjugated bonds and planar structural configuration of (H2C3N3O3)- groups, they show a concurrently short ultraviolet absorption edge (λcut-off ≈ 230 nm) and strong optical anisotropy (Δn ≈ 0.37 at 800 nm), twice larger than that of the benchmark UV birefringent crystal calcite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA