Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
2.
Adv Sci (Weinh) ; : e2400642, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647258

RESUMO

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.

3.
Biochem Pharmacol ; 224: 116206, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615921

RESUMO

Long-chain fatty acyl-Coa ligase 4 (ACSL4) is an important enzyme that converts fatty acids to fatty acyl-Coa esters, there is increasing evidence for its role in carcinogenesis. However, the precise role of ACLS4 in hepatocellular carcinoma (HCC) is not clearly understood. In the present study, we provide evidence that ACSL4 expression was specifically elevated in HCC and is associated with poor clinical outcomes. ACSL4 significantly promotes the growth and metastasis of HCC both in vitro and in vivo. RNA sequencing and functional experiments showed that the effect of ACSL4 on HCC development was heavily dependent on PAK2. ACSL4 expression is well correlated with PAK2 in HCC, and ACSL4 even transcriptionally increased PAK2 gene expression mediated by Sp1. In addition, emodin, a naturally occurring anthraquinone derivative, inhibited HCC cell growth and tumor progression by targeting ACSL4. In summary, ACSL4 plays a novel oncogene in HCC development by regulating PAK2 transcription. Targeting ACSL4 could be useful in drug development and therapy for HCC.

4.
J Proteomics ; 291: 105045, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37939914

RESUMO

BACKGROUND: Lymph node metastasis (LNM) from Breast cancer (BC) is commonly seen in BC progression. Currently, the identification of genes linked with LNM in BC remains in mystery. METHODS: Genes related to BC LNM were screened, and a risk model was constructed based on LASSO-Cox analysis. Combined with the Kaplan-Meier curve, the ability of riskscore to distinguish different baseline characteristics was evaluated, and model was verified by the receiver operating characteristic (ROC) curve. The expression levels of prognostic marker genes were analyzed by qRT-PCR and western blot (WB). RESULTS: A higher survival rate and longer survival time in low-risk BC patients. The 1, 3 and 5 year AUC values of the training set were 0.79, 0.74, and 0.73, respectively. Results for the validation set was similar to the training set. The differentially expressed genes between the high- and low-risk groups were significantly enriched in immune pathways. In addition, the low-risk group had higher levels of immune infiltration. qRT-PCR and WB results showed that in BC, CDH10, SMR3A, POU3F2, and FABP7 were down-regulated, and LHX1 was up-regulated. CONCLUSIONS: We built a prognostic model of BC based on LNM-related genes, proffering evaluation for prognosis and precise cure of BC. SIGNIFICANCE: At present, the genes related to lymph node metastasis in BC are still largely unknown and need to be further explored. Searching for potential lymph node metastasis-related genes of BC will provide meaningful biomarkers for BC treatment. Based on TCGA-BRCA data, we established an effective 11-gene prognostic risk model that could predict patient outcomes independently. Our model could classify BC patients and distinguish patients with poor prognosis effectively. Besides, the feature genes we identified might exert a predictive function in immunotherapy. The results of this study provide a new reference for the prognosis and treatment of BC patients with lymph node metastasis.


Assuntos
Neoplasias da Mama , Linfoma , Humanos , Feminino , Neoplasias da Mama/genética , Metástase Linfática , Prognóstico , Mama
5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686337

RESUMO

CHD7, an encoding ATP-dependent chromodomain helicase DNA-binding protein 7, has been identified as the causative gene involved in CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia choanae, Retardation of growth and/or development, Genital abnormalities and Ear abnormalities). Although studies in rodent models have expanded our understanding of CHD7, its role in oligodendrocyte (OL) differentiation and myelination in zebrafish is still unclear. In this study, we generated a chd7-knockout strain with CRISPR/Cas9 in zebrafish. We observed that knockout (KO) of chd7 intensely impeded the oligodendrocyte progenitor cells' (OPCs) migration and myelin formation due to massive expression of chd7 in oilg2+ cells, which might provoke upregulation of the MAPK signal pathway. Thus, our study demonstrates that chd7 is critical to oligodendrocyte migration and myelination during early development in zebrafish and describes a mechanism potentially associated with CHARGE syndrome.


Assuntos
Síndrome CHARGE , Células Precursoras de Oligodendrócitos , Animais , Diferenciação Celular/genética , Síndrome CHARGE/genética , DNA Helicases/genética , Oligodendroglia , Peixe-Zebra/genética
6.
J Pharm Biomed Anal ; 234: 115481, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37413917

RESUMO

Scutellaria baicalensis Georgi (SG) and Scutellaria rehderiana Diels (SD) belong to the same genus of Scutellaria in the Labiatae (Lamiaceae) family. SG is confirmed as the medicinal source according to the Chinese Pharmacopeia, but SD is often used as a substitute for SG due to its abundant plant resources. However, the current quality standards are far from sufficient to judge the quality differences between SG and SD. In this study, an integrated strategy of "biosynthetic pathway (specificity) - plant metabolomics (difference) - bioactivity evaluation (effectiveness)" was established to evaluate this quality differences. First, an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS) method was developed for the identification of chemical components. The abundant components information was obtained and the characteristic constituents were screened according to the location in the biosynthetic pathway as well as species specificity. Then, plant metabolomics combined with multivariate statistical analysis to find differential components between SG and SD. The chemical markers for quality analysis were determined based on the differential and characteristic components, and the content of each marker was tentatively evaluated through the semi-quantitative analysis of UHPLC-Q/TOF-MS/MS. Finally, the anti-inflammatory activity of SG and SD was compared by measuring the inhibitory effect on the release of NO from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Under this analytical strategy, a total of 113 compounds were tentatively identified in both SG and SD, among which baicalein, wogonin, chrysin, oroxylin A 7-O-ß-D-glucuronoside, pinocembrin and baicalin were selected as chemical markers due to their species characteristics and differentiation. The contents of oroxylin A 7-O-ß-D-glucuronoside and baicalin was higher in SG, and the others were higher in SD. In addition, both SG and SD exhibited prominent anti-inflammatory activity, but SD was less effective. The analysis strategy combining phytochemistry and bioactivity evaluation realized the scientific evaluation of the intrinsic quality differences between SG and SD, which provides a reference for fully utilizing and expanding the medicinal resources, and also provides a reference for the comprehensive quality control of herbal medicines.


Assuntos
Scutellaria , Scutellaria/química , Scutellaria baicalensis/química , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Cromatografia Líquida/métodos
7.
Cell Mol Biol Lett ; 28(1): 47, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259060

RESUMO

BACKGROUND: Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS: HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS: HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION: We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Imunoterapia , Macaca fascicularis , Anticorpos Biespecíficos/farmacologia
8.
Toxicol In Vitro ; 90: 105601, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37031912

RESUMO

Humans are continuously exposed to toxic chemicals such as nitro-chlorobenzene (CDNB) through occupation, water, and even the air we breathe. Due to the severe toxicity caused by the high electrophilicity of CDNB, occupational and environmental exposure to CDNB can produce toxic effects that ultimately lead to cell damage. CDNB can be eliminated from organisms by binding to GSH, the catalytic product of glutathione S-transferase P1 (GSTP1). Therefore, GSTP1 plays an important role in the detoxification of CDNB. However, subtle variations in GSTP1 can result in single nucleotide polymorphisms (SNPs). Indeed, the correlation between the clinical outcome of the disease and certain genotypes of GSTP1 has been extensively studied, however, their impact on the metabolic detoxification of toxicants such as CDNB remains to be elucidated. Among the various SNPs of GSTP1, I105V has a significant effect on the catalytic activity of GSTP1. In this paper, a GSTP1 I105V polymorphism model was successfully established, and its effect on CDNB metabolism and toxicity was studied by computer analysis including molecular docking and molecular dynamics simulation. The result demonstrated that the binding capacity of CDNB decreases with the I105V mutation of GSTP1(p < 0.001), indicating the changes in its detoxification efficacy in CDNB-induced cell damage. Organisms expressing GSTP1 V105 are more susceptible to cell damage caused by CDNB than individuals expressing GSTP1 I105 (p < 0.001). In sum, the data in this study provide prospective insights into the mechanism and capacity of CDNB detoxification in the GSTP1 allele, extending the CDNB-mediated toxicological profile. In addition, the heterogeneity of the GSTP1 allele should be included in toxicological studies of individuals exposed to CDNB.


Assuntos
Glutationa S-Transferase pi , Glutationa Transferase , Humanos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glutationa S-Transferase pi/genética , Simulação de Acoplamento Molecular , Genótipo , Polimorfismo de Nucleotídeo Único
9.
Sci Adv ; 9(6): eade5393, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763655

RESUMO

Dysregulated endocrine hormones (EHs) contribute to tumorigenesis, but how EHs affect the tumor immune microenvironment (TIM) and the immunotherapy of non-small cell lung cancer (NSCLC) is still unclear. Here, endogenous ouabain (EO), an adrenergic hormone, is elevated in patients with NSCLC and closely related to tumor pathological stage, metastasis, and survival. EO promotes the suppression of TIM in vivo by modulating the expression of immune checkpoint proteins, in which programmed cell death protein ligand 1 (PD-L1) plays a major role. EO increases PD-L1 transcription; however, the EO receptor Na- and K-dependent adenosine triphosphatase (Na, K-ATPase) α1 interacts with PD-L1 to trigger the endocytic degradation of PD-L1. This seemingly contradictory result led us to discover the mechanism whereby EO cooperates with Na, K-ATPase α1 to finely control PD-L1 expression and dampen tumoral immunity. In conclusion, the Na, K-ATPase α1/EO signaling facilitates immune escape in lung cancer, and manipulation of this signaling shows great promise in improving immunotherapy for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Antígeno B7-H1 , Neoplasias Pulmonares , ATPase Trocadora de Sódio-Potássio , Humanos , Adenosina Trifosfatases , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Ligantes , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Microambiente Tumoral , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Brain Imaging Behav ; 17(3): 271-281, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36694086

RESUMO

It has been well-established that high-altitude (HA) environments affect the human brain; however, the differences in brain structural and functional networks between HA natives and acclimatized immigrants have not been well clarified. In this study, native HA Tibetans were recruited for comparison with Han immigrants (average of 2.3 ± 0.3 years at HA), with lowland residents recruited as controls. Cortical gray matter volume, thickness, and functional connectivity were investigated using magnetic resonance imaging data. In addition, reaction time and correct score in the visual movement task, hematology, and SpO2 were measured. In both Tibetans and HA immigrants vs. lowlanders, decreased SpO2, increased hematocrit and hemoglobin, and increased reaction time and correct score in the visual movement task were detected. In both Tibetans and HA immigrants vs. lowlanders, gray matter volumes and cortical thickness were increased in the left somatosensory and motor cortex, and functional connectivity was decreased in the visual, default mode, subcortical, somatosensory-motor, ventral attention, and subcortical networks. Furthermore, SpO2 increased, hematocrit and hemoglobin decreased, and gray matter volumes and cortical thickness increased in the visual cortex, left motor cortex, and right auditory cortex in native Tibetans compared to immigrants. Movement time and correct score in task were positively correlated with the thickness of the visual cortex. In conclusion, brain structural and functional network difference in both Tibetan natives and HA immigrants were largely consistent, with native Tibetans only showing more intense brain modulation. Different populations acclimatized to HA develop similar brain mechanisms to cope with hostile HA environmental factors.


Assuntos
Altitude , Emigrantes e Imigrantes , Humanos , Tibet , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Hemoglobinas
11.
Neuroscience ; 520: 134-143, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716913

RESUMO

Tibetans have adapted to high altitude environments. However, the genetic effects in their brains have not been identified. Twenty-five native Tibetans living in Lhasa (3650 m) were recruited for comparison with 20 Han immigrants who originated from lowlands and had been living in Lhasa for two years. The physiological characteristics, brain structure and neuronal spontaneous activity were investigated. Compared with Han immigrants, Tibetans showed higher peripheral oxygen saturation (SpO2), and lower heart rate, red blood cell counts, hematocrit, and hemoglobin. Tibetans showed increased gray matter volume in the visual cortex, hippocampus, and rectus; increased the amplitudes of low-frequency fluctuations (ALFF) values in the left putamen and left fusiform gyrus; and decreased voxel-mirrored homotopic connectivity (VMHC) values in the precentral gyrus. Moreover, Tibetans have decreased functional connectivity (FC) between the left precentral gyrus and the frontal gyrusand right precuneus. In Tibetans and Han immigrants, hemoglobin and hematocrit were negatively correlated with total gray matter volume in males, SpO2 was also positively correlated with ALFF in the left fusiform gyrus, while hemoglobin, and hematocrit were positively correlated with VMHC in the precentral gyrus and FC in the precentral gyrus with other brain regions, SpO2 was also found to be negatively correlated with VMHC in the precentral gyrus, and hemoglobin and hematocrit were negatively correlated with ALFF in the left putamen and left fusiform gyrus. In summary, genetic mutations may result in modulation of some brain regions, which was further confirmed by the identification of correlations with hemoglobin and hematocrit in these regions.


Assuntos
Altitude , Imageamento por Ressonância Magnética , Masculino , Humanos , Tibet , Encéfalo/diagnóstico por imagem , Hemoglobinas
12.
Br J Pharmacol ; 180(12): 1562-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581319

RESUMO

BACKGROUND AND PURPOSE: Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH: Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS: SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-ß/SMAD signalling, but the stimulatory effect of SQLE on TGF-ß/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-ß/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS: Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-ß/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Linhagem Celular , Proliferação de Células/genética , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
14.
Front Oncol ; 12: 1019442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387251

RESUMO

A more accurate prognosis is important for clinical treatment of lung adenocarcinoma. However, due to the limitation of sample and technical bias, most prognostic signatures lacked reproducibility, and few were applied to clinical practice. In addition, understanding the molecular driving mechanism is indispensable for developing more promising therapies for lung adenocarcinoma. Here, we built an unbiased prognostic significance model to perform an integrative analysis, including differentially expressed genes and clinical data with lung adenocarcinoma patients from TCGA. Multivariable Cox proportional hazards model with the Lasso penalty and 10-fold cross-validate were used to identify the best gene signature. We generated a 17-gene signature for prognostic risk prediction based on the overall survival time of lung adenocarcinoma patients. To further test the model's predictive ability, we have applied an independent GEO database to verify the predictive ability of prognostic signature. The model can more objectively describe several biological processes related to tumors and reveal important molecular mechanisms in tumor development by GO and KEGG analysis. Furthermore, differential expression analysis by GSEA revealed that tumor microenvironments such as ER stress, exosome, and immune microenvironment were enriched. Using single-cell RNA sequence technology, we found that risk score was positively correlated with lung adenocarcinoma marker genes and copy number variation but negatively correlated with lung epithelial marker genes. High-risk cell populations with the model had stronger cancer stemness and tumor-related pathway activation. As we expected, the risk score was in accordance with the malignancy of each cluster from tumor progression. In conclusion, the risking model established in this study is more reliable than others in evaluating the prognosis of LUAD patients.

15.
J Transl Med ; 20(1): 415, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076251

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. METHODS: The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. RESULTS: HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. CONCLUSIONS: This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Epitopos , Imunoterapia , Macaca fascicularis , Camundongos , Receptores de IgG
16.
J Sep Sci ; 45(23): 4280-4291, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168848

RESUMO

Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.


Assuntos
Metabolômica
17.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014586

RESUMO

Two new guaiane sesquiterpenes, aquisinenoids A and B (1 and 2), two new eudesmane-type sesquiterpenoids, aquisinenoids C and D (3 and 4), one new cucurbitacin, aquisinenoid E (5), and five known cucurbitacins (6-10) were isolated from agarwood of Aquilaria sinensis. The structures of these new compounds, including their absolute configurations, were characterized by spectroscopic and computational methods. The biological evaluation showed that compounds 3 and 9 had an anti-cancer effect on most of the cancer cells at 5 µM, especially in human breast cancer cells. Interestingly, the new compound 3 exhibited more sensitivity on cancer cells than normal cells, highlighting its potential as a novel anti-cancer agent. Mechanically, compound 3 treatment increased the ROS generation and triggered apoptosis of human breast cancer cells.


Assuntos
Neoplasias da Mama , Sesquiterpenos , Thymelaeaceae , Triterpenos , Neoplasias da Mama/tratamento farmacológico , Cucurbitacinas , Feminino , Humanos , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos de Guaiano , Thymelaeaceae/química , Triterpenos/análise , Triterpenos/farmacologia , Madeira/química
18.
Int J Gen Med ; 15: 1131-1146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153505

RESUMO

PURPOSE: This study aimed to determine the potential application of the protein phosphatase 1 regulatory subunit 3 (PPP1R3B) gene as a prognostic marker in stomach adenocarcinoma (STAD), as well as its potential mediating biological processes and pathways. MATERIALS AND METHODS: Differential expression analyses were performed using the TIMER2.0 and UALCAN databases. Complete RNA-seq data and other relevant clinical and survival data were acquired from The Cancer Genome Atlas (TCGA). Univariate survival analyses, Cox regression modelling, and Kaplan-Meier curves were implemented to investigate the associations between PPP1R3B gene expression and clinical pathologic features. A genome wide gene set enrichment analysis (GSEA) was conducted to define the underlying molecular mechanisms mediating the observed associations between the PPP1R3B gene and STAD development. RESULTS: We found that PPP1R3B was overexpressed in STAD tissues, and that higher PPP1R3B expression correlated with worse prognoses in patients with STAD. Comprehensive survival analyses suggested that PPP1R3B might be an independent predictive factor for survival time in patients with STAD. The prognostic relationship between PPP1R3B and STAD was also verified using Kaplan-Meier curves. Patients with higher PPP1R3B levels had a shorter clinical survival time on average. Additionally, a GSEA demonstrated that PPP1R3B might be involved in multiple biological processes and pathways. CONCLUSION: Our findings demonstrate that the PPP1R3B gene has utility as a potential molecular marker for STAD prognoses.

19.
Front Nutr ; 9: 1035623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761989

RESUMO

Introduction: Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods: Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results: A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion: This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.

20.
Sheng Li Xue Bao ; 73(6): 893-900, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34961863

RESUMO

The purpose of the present study was to investigate the effect and potential mechanism of knockdown of sphingosine kinase-1 (SPHK1) on the proliferation, cell cycle and apoptosis of non-small cell lung cancer (NSCLC) cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect SPHK1 mRNA expression in human healthy lung fibroblasts (MRC-5 cells) and four NSCLC cell lines. Then, A549 and H1299 cells were transfected with SPHK1-shRNA and corresponding negative control. CCK-8, Annexin V-FITC/PI dual staining and cell cycle assay were performed to evaluate cell proliferation, apoptosis and cell cycle distribution, respectively. JC-1 mitochondrial membrane potential measurement kit was adopted to measure mitochondrial membrane potential. Western blot was used to detect the protein expression levels of cell cycle and mitochondrial apoptotic pathway-related proteins, as well as MEK/ERK signaling pathway. The results showed that the mRNA expression of SPHK1 in NSCLC cells was higher than that in MRC-5 cells. SPHK1-shRNA significantly inhibited the proliferation of A549 and H1299 cells, blocked the cell cycle in G0/G1 phase, and promoted cell apoptosis through the mitochondrial pathway. Compared with the control group, the expression of p-MEK and p-ERK proteins in the SPHK1-shRNA group was significantly down-regulated. Moreover, MEK/ERK inhibitor could dramatically suppress cell proliferation and promote cell apoptosis. These results suggest that SPHK1 knockdown can inhibit the proliferation of NSCLC cells and might promote mitochondrial apoptotic pathway by inhibiting MEK/ERK signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA