Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Lab Chip ; 24(13): 3284-3293, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38847194

RESUMO

The prostate-specific antigen (PSA) test is considered an important way for preoperative diagnosis and accurate screening of prostate cancer. Current antigen detection methods, including radioimmunoassay, enzyme-linked immunosorbent assay and microfluidic electrochemical detection, feature expensive equipment, long testing time and poor stability. Here, we propose a portable biosensor composed of electrolyte-gated amorphous indium gallium zinc oxide (a-IGZO) transistors with an extended gate, which can achieve real-time, instant PSA detection at a low operating voltage (<2 V) owing to the liquid-free ionic conductive elastomer (ICE) serving as the gate dielectric. The electric double layer (EDL) capacitance in ICE enhances the accumulation of carriers in the IGZO channel, leading to strong gate modulation, which enables the IGZO transistor to have a small subthreshold swing (<0.5 V dec-1) and a high on-state current (∼4 × 10-4 A). The separate, biodegradable, and pluggable sensing pad, serving as an extended gate connected to the IGZO transistor, prevents contamination and depletion arising from direct contact with biomolecular buffers, enabling the IGZO transistor to maintain superior electronic performance for at least six months. The threshold voltage and channel current of the transistor exhibit excellent linear response to PSA molecule concentrations across five orders of magnitude ranging from 1 fg mL-1 to 10 pg mL-1, with a detection limit of 400 ag mL-1 and a detection time of ∼5.1 s. The fabricated biosensors offer a point-of-care system for antigen detection, attesting the feasibility of the electrolyte-gated transistors in clinical screening, healthcare diagnostics and biological management.


Assuntos
Técnicas Biossensoriais , Eletrólitos , Gálio , Antígeno Prostático Específico , Transistores Eletrônicos , Óxido de Zinco , Antígeno Prostático Específico/análise , Humanos , Eletrólitos/química , Óxido de Zinco/química , Técnicas Biossensoriais/instrumentação , Gálio/química , Masculino , Índio/química , Desenho de Equipamento
2.
Abdom Radiol (NY) ; 49(4): 1275-1287, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436698

RESUMO

OBJECTIVES: The aim of the study was to externally validate two AI models for the classification of prostate mpMRI sequences and segmentation of the prostate gland on T2WI. MATERIALS AND METHODS: MpMRI data from 719 patients were retrospectively collected from two hospitals, utilizing nine MR scanners from four different vendors, over the period from February 2018 to May 2022. Med3D deep learning pretrained architecture was used to perform image classification,UNet-3D was used to segment the prostate gland. The images were classified into one of nine image types by the mode. The segmentation model was validated using T2WI images. The accuracy of the segmentation was evaluated by measuring the DSC, VS,AHD.Finally,efficacy of the models was compared for different MR field strengths and sequences. RESULTS: 20,551 image groups were obtained from 719 MR studies. The classification model accuracy is 99%, with a kappa of 0.932. The precision, recall, and F1 values for the nine image types had statistically significant differences, respectively (all P < 0.001). The accuracy for scanners 1.436 T, 1.5 T, and 3.0 T was 87%, 86%, and 98%, respectively (P < 0.001). For segmentation model, the median DSC was 0.942 to 0.955, the median VS was 0.974 to 0.982, and the median AHD was 5.55 to 6.49 mm,respectively.These values also had statistically significant differences for the three different magnetic field strengths (all P < 0.001). CONCLUSION: The AI models for mpMRI image classification and prostate segmentation demonstrated good performance during external validation, which could enhance efficiency in prostate volume measurement and cancer detection with mpMRI. CLINICAL RELEVANCE STATEMENT: These models can greatly improve the work efficiency in cancer detection, measurement of prostate volume and guided biopsies.


Assuntos
Neoplasias , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neoplasias/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
3.
Int J Biol Macromol ; 260(Pt 1): 129336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224811

RESUMO

Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.


Assuntos
Cordyceps , Cordyceps/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Polissacarídeos/química , Fermentação , Hipoglicemiantes/metabolismo
4.
Food Funct ; 14(18): 8487-8503, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655471

RESUMO

Type 2 diabetes mellitus (T2DM) is typically accompanied by sudden weight loss, dyslipidemia-related indicators, decreased insulin sensitivity, and altered gut microbial communities. Fagopyrum tataricum possesses many biological activities, such as antioxidant, hypolipidemic, and hypotensive activities. However, only a few studies have attempted to elucidate the regulatory effects of F. tataricum ethanol extract (FTE) on intestinal microbial communities and its potential relationships with T2DM. In this study, we established a T2DM mouse model and investigated the regulatory effects of FTE on hyperglycemia symptoms and intestinal microbial communities. FTE intervention significantly improved the levels of fasting blood glucose, the area under the curve of oral glucose tolerance test (OGTT), and glycosylated serum protein, as well as pancreas islet function correlation index. In addition, FTE effectively improved hepatic and cecum injuries and insulin secretion due to T2DM. It was also revealed that the potential hypoglycemic mechanism of FTE was involved in the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). Furthermore, compared with the Model group, the FTE-H intervention exhibited a significantly decreased ratio of Firmicutes to Bacteroidetes at the phylum level, reduced relative abundance of pernicious bacteria at the genus level, such as Desulfovibrio, Oscillibacter, Blautia, Parabacteroides, and Erysipelatoclostridium, and ameliorated inflammatory response and insulin resistance. Moreover, the correlation between gut microbiota and hypoglycemic indicators was predicted. The results showed that Lachnoclostridium, Lactobacillus, Oscillibacter, Bilophila, and Roseburia have the potential to be used as bacterial markers for T2DM. In conclusion, our research showed that FTE alleviates hyperglycemia symptoms by regulating the expression of AKT-1 and GLUT-2, as well as intestinal microbial communities in T2DM mice.


Assuntos
Diabetes Mellitus Tipo 2 , Fagopyrum , Microbioma Gastrointestinal , Hiperglicemia , Lactobacillales , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes , Firmicutes , Bacteroidetes , Clostridiales , Etanol , Extratos Vegetais
5.
Am J Chin Med ; 51(4): 929-951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974993

RESUMO

Maslinic acid (MA) is a pentacyclic triterpene obtained from the peel of olives that exhibits anti-inflammatory and antioxidant properties in several conditions. Our previous study revealed that MA exerted a cardioprotective effect by repressing inflammation and apoptosis during myocardial ischemia-reperfusion injury (MIRI). However, data regarding the antioxidative effects of MA on MIRI remains limited. This study aims to elucidate the antioxidative roles and underlying mechanisms of MA on MIRI. The left anterior descending coronary artery of rats was subjected to ligate for the induction of the ischemia/reperfusion (I/R) model and the H9c2 cells were exposed to hydrogen peroxide (H2O2) to mimic oxidative stress. The results showed that MA reduced the I/R-induced myocardial injury and H2O2-induced cardiomyocyte death in a dose-dependent manner. Meanwhile, MA increased the activities of glutathione and superoxide dismutase both in vitro and in vivo while lowering the levels of reactive oxygen species and malondialdehyde. Mechanistically, MA could facilitate Nrf2 nuclear translocation, activate the Nrf2/HO-1 signaling pathway, and repress the NF-[Formula: see text]B signaling pathway both in I/R- and H2O2-induced oxidative stress. Besides, MA promoted the intranuclear Nrf2 and HO-1 expression, which could in part be improved by QNZ (NF-[Formula: see text]B inhibitor) in H2O2-insulted cells. Conversely, MA markedly reduced the intranuclear NF-[Formula: see text]B p65 and TNF-[Formula: see text] expression, which could be partially abolished by ML385 (Nrf2 inhibitor). Overall, our results indicate that MA, in a dose-dependent manner, mitigated I/R-induced myocardial injury and oxidative stress via activating the Nrf2/HO-1 pathway and inhibiting NF-[Formula: see text]B activation. Furthermore, MA exerts its cardioprotective effect through regulating the crosstalk between the Nrf2 and NF-[Formula: see text]B pathways.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose
6.
Phys Chem Chem Phys ; 25(1): 617-624, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484436

RESUMO

Two-dimensional silicon-based material siligene (SiGe) has a low diffusion barrier and high theoretical specific capacity, but the conductivity drops sharply after being fully lithiated. To improve their electrical conductivity, the three heterostructures (SV-G/S, DV-G/S, and SW-G/S) formed with defective graphene and SiGe were proposed and the feasibility of them as anode materials was analyzed systematically. Based on density functional theory, the structural properties of defective graphene/SiGe heterostructures (Def-G/S), the adsorption and diffusion behaviours of Li, the voltage and theoretical capacity, and electrical conductivity during the lithiation process were investigated. The results show that defective graphene can form a stable heterostructure with SiGe and the heterostructure with defects can accommodate more Li atoms. The good adsorption and low diffusion energy barrier ensure the capacity, cycling, and safety performance of Def-G/S as anode materials. Moreover, Def-G/S significantly improves the conductivity of pristine 2D SiGe after full lithiation. These excellent properties indicate that Def-G/S has great potential as an anode material for Li-ion batteries.

7.
Acta Biomater ; 149: 321-333, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779772

RESUMO

B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.


Assuntos
Linfoma de Células B , Linfoma , Animais , Apoptose , Imunidade , Linfoma de Células B/tratamento farmacológico , Camundongos , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico
8.
Comput Intell Neurosci ; 2022: 3492175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769275

RESUMO

This study proposes an optimized algorithm for the navigation of the mobile robot in the indoor and dynamic unknown environment based on the decision tree algorithm. Firstly, the error of the yaw value outputted from IMU sensor fusion module is analyzed in the indoor environment; then, the adaptive FAST SLAM is proposed to optimize the yaw value from the odometer; in the next, a decision tree algorithm is applied which predicts the correct moving direction of the mobile robot through the outputted yaw value from the IMU sensor fusion module and adaptive FAST SLAM of the odometer data in the indoor and dynamic environment; the following is the navigation algorithm proposed for the mobile robot in the dynamic and unknown environment; finally, a real mobile robot is designed to verify the proposed algorithm.The final result shows the proposed algorithms are valid and effective.


Assuntos
Robótica , Algoritmos , Árvores de Decisões
9.
J Environ Manage ; 302(Pt A): 113974, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710764

RESUMO

In the context of carbon neutrality and the National Economic Circle Strategy, understanding regional disparities in carbon emissions from household consumption is conducive to regional coordination as well as high-quality and low-carbon development in China. In this study, a multiregional input-output (MRIO) model and structural decomposition analysis (SDA) are adopted to investigate the regional disparity change trends of embedded carbon emissions (ECEs) from urban households and the underlying drivers during the rapid economic development period from 2002 to 2012 in China. The results indicate that the eastern regions tended to have larger increments in total urban household ECEs, while the western regions tended to have faster growth rates. An increasing disparity and evident outsourcing pattern can be observed during the study period. The consumption level had a strong positive effect on urban household ECEs in all of the provinces, while the carbon efficiency, consumption pattern, production structure, and population size had differentiated offsetting effects on urban household ECEs in various provinces. The results obtained in this study are conducive to promoting joint efforts for carbon emission reduction and narrowing regional disparities.


Assuntos
Carbono , Serviços Terceirizados , Carbono/análise , Dióxido de Carbono/análise , China , Desenvolvimento Econômico
10.
Front Cardiovasc Med ; 8: 768947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859077

RESUMO

Aims: The inflammatory response and apoptosis are the major pathological features of myocardial ischemia/reperfusion injury (MI/RI). Maslinic acid (MA), a natural pentacyclic triterpene with various bioactivities, plays critical roles in the multiple cellular biological processes, but its protective effects on the pathophysiological processes of MI/RI have not been extensively investigated. Our study aimed to determine whether MA treatment alleviate ischemia/reperfusion (I/R)-induced myocardial inflammation and apoptosis both in vitro and in vivo, and further reveal the underlying mechanisms. Methods and results: An MI/RI rat model was successfully established by ligating the left anterior descending coronary artery and H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to mimic I/R injury. In addition, prior to H/R stimulation or myocardial I/R operation, the H9c2 cells or rats were treated with varying concentrations of MA or vehicle for 24 h and two consecutive days, respectively. In this study, our results showed that MA could obviously increase the cell viability and decrease the cardiac enzymes release after H/R in vitro. MA could significantly improve the H/R-induced cardiomyocyte injury and I/R-induced myocardial injury in a dose-dependent manner. Moreover, MA suppressed the expression of inflammatory cytokines (tumor necrosis factor alpha [TNF-α, interleukin-1ß [IL-1ß and interleukin-6 [IL-6]) and the expressions of apoptosis-related proteins (cleaved caspase-3 and Bax) as well as increased the levels of anti-apoptotic protein Bcl-2 expression both in vitro and in vivo. Mechanistically, MA significantly inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 after H/R via regulating high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) axis. Conclusion: Taken together, MA treatment may alleviate MI/RI by suppressing both the inflammation and apoptosis in a dose-dependent manner, and the cardioprotective effect of MA may be partly attributable to the inactivation of HMGB1/TLR4/NF-κB pathway, which offers a new therapeutic strategy for MI/RI.

11.
Redox Biol ; 47: 102156, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34607159

RESUMO

OBJECTIVE: The disruption of mitochondrial redox homeostasis in endothelial cells (ECs) can cause chronic inflammation, a substantial contributor to the development of atherosclerosis. Chronic sympathetic hyperactivity can enhance oxidative stress to induce endothelial dysfunction. We determined if renal denervation (RDN), the strategy reducing sympathetic tone, can protect ECs by ameliorating mitochondrial reactive oxygen species (ROS)-induced inflammation to reduce atherosclerosis. METHODS AND RESULTS: ApoE deficient (ApoE-/-) mice were conducted RDN or sham operation before 20-week high-fat diet feeding. Atherosclerosis, EC phenotype and mitochondrial morphology were determined. In vitro, human arterial ECs were treated with norepinephrine to determine the mechanisms for RDN-inhibited endothelial inflammation. RDN reduced atherosclerosis, EC mitochondrial oxidative stress and inflammation. Mechanistically, the chronic sympathetic hyperactivity increased circulating norepinephrine and mitochondrial monoamine oxidase A (MAO-A) activity. MAO-A activation-impaired mitochondrial homeostasis resulted in ROS accumulation and NF-κB activation, thereby enhancing expression of atherogenic and proinflammatory molecules in ECs. It also suppressed mitochondrial function regulator PGC-1α, with involvement of NF-κB and oxidative stress. Inactivation of MAO-A by RDN disrupted the positive-feedback regulation between mitochondrial dysfunction and inflammation, thereby inhibiting EC atheroprone phenotypic alterations and atherosclerosis. CONCLUSIONS: The interplay between MAO-A-induced mitochondrial oxidative stress and inflammation in ECs is a key driver in atherogenesis, and it can be reduced by RDN.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Denervação , Células Endoteliais/metabolismo , Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Fenótipo
12.
Arch Anim Breed ; 64(2): 405-416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34584942

RESUMO

Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in chicken growth and development and to investigate the potential regulatory mechanisms of early growth in Haiyang yellow chicken. RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages. In total, 6150 differentially expressed genes (DEGs) ( | fold change |   ≥  2; false discovery rate (FDR)  ≤  0.05) were detected by pairwise comparison in female chickens. Functional analysis showed that the DEGs were mainly involved in the processes of muscle growth and development and cell differentiation. Many of the DEGs, such as MSTN, MYOD1, MYF6, MYF5, and IGF1, were related to chicken growth and development. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were significantly enriched in four pathways related to growth and development: extracellular matrix (ECM)-receptor interaction, focal adhesion, tight junction, and insulin signalling pathways. A total of 42 DEGs assigned to these pathways are potential candidate genes for inducing the differences in growth among the four development stages, such as MYH1A, EGF, MYLK2, MYLK4, and LAMB3. This study identified a range of genes and several pathways that may be involved in regulating early growth.

13.
J Ethnopharmacol ; 280: 114475, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363929

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM: This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS: This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS: More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION: Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.


Assuntos
Cirsium/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Animais , China , Medicamentos de Ervas Chinesas/química , Etnofarmacologia , Humanos
14.
Arch Anim Breed ; 64(1): 45-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084903

RESUMO

Anti-Müllerian hormone (AMH), a member of the transforming growth factor- ß superfamily, plays important regulatory roles in follicular development and sex differentiation. Although much has been learned about the impact of polymorphisms of AMH on reproduction in animals, the effect on chicken reproduction is not well explored. In this study, the polymorphism of five exons of AMH gene and its effect on the reproductive performance of Jinghai Yellow chickens were studied. Primers for the amplification of AMH exons were designed, and Sanger sequencing was performed. Finally, only the polymorphism in the second exon of the AMH gene was found in the present population. Polymorphisms in the second exon of the AMH gene in 246 Jinghai Yellow hens and their associations with reproductive traits were analyzed. In total, four single nucleotide polymorphism (SNP) mutations were detected in the second exon of the AMH gene: g.1868A > C (AA, aa and Aa); g.1883G > A (BB, bb and Bb); g.1987G > A (CC, cc and Cc); and g.1996A > G (DD, dd and Dd). Only the mutation of g.1996A > G affected the reproductive traits: the age of laying first egg (AFE) of dd genotype was significantly ( p < 0.01 ) earlier than that in the DD and Dd hens. Moreover, the egg number by 300 d old (EN300) of dd individuals was significantly higher than that of DD and Dd individuals ( p < 0.01 ). Thus, we inferred that the dd genotype is the beneficial genotype. Additionally, AFE and EN300 showed significantly better performance in both the H2H2 and H7H7 diplotypes compared with other diplotype individuals ( p < 0.01 ). Thus, the H2H2 and H7H7 genotype had the best combination of AFE and EN300. Our study may allow for molecular marker section in poultry breeding.

15.
J Hazard Mater ; 416: 125782, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838505

RESUMO

Selective catalytic oxidation is regarded as an effective and favored method for the removal of hazardous ammonia. A number of M-Pt/USY (M=Mn, Fe, Ce and Pr) catalysts were prepared and the resulting materials were characterized using N2 adsorption/desorption, XRD, TEM, NH3-TPD, XPS and H2-TPR. It was found that the addition of non-stoichiometric metal oxides to Pt/USY leads to the generation of additional acid sites for ammonia chemisorption and that N2 selectivity improved with increased strong acidity of the bi-functional catalysts. The oxidation state of active Pt could be adjusted by the introduction of non-stoichiometric metal oxides with increased concentrations of oxidized Ptδ+ species observed in the order of FeOx >CeO2-x >MnO2-x >Pr6O11. High valence platinum surrounded by atomic oxygen that can act as a proton scavenger to drive ammonia activation, inhibiting O2 dissociation and therefore improve N2 selectivity. Fe-containing USY zeolite is demonstrated to be a preferred catalyst for the removal of ammonia, due to its high N2 selectivity and good hydrothermal stability.

16.
ACS Appl Mater Interfaces ; 13(17): 20380-20387, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878258

RESUMO

Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.

17.
Genes (Basel) ; 11(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255823

RESUMO

The proliferation and differentiation of myoblasts is an important process of skeletal muscle development. In this process, microRNAs (miRNAs) play an important role in the proliferation and differentiation of chicken primary myoblasts (CPMs). Our previous study found that miR-214 and the tRNA methyltransferase 61A (TRMT61A) gene were differentially expressed in different stages of proliferation and differentiation. Therefore, this study aimed to explore the effect of miR-214 on the proliferation and differentiation of CPMs and the functional relationship between miR-214 and TRMT61A. In this study, we detected the effect of miR-214 on the proliferation of CPMs by qPCR, flow cytometry, CCK-8, and EdU after the overexpression and interference of miR-214. qPCR, Western blotting, and indirect immunofluorescence were used to detect the effect of miR-214 on the differentiation of the CPMs. The expression patterns of miR-214 and TRMT61A were observed at different time points of differentiation induced by the CPMs. The results show that miR-214 inhibited the proliferation of the CPMs and promoted the differentiation of the CPMs. The Dual-Luciferase Reporter assay and the expression pattern of miR-214 and TRMT61A suggested that they had a negative regulatory target relationship. This study revealed the function and regulatory mechanism of miR-214 in the proliferation and differentiation of CPMs.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Galinhas/genética , MicroRNAs/genética , Mioblastos/fisiologia , tRNA Metiltransferases/genética , Animais , Desenvolvimento Muscular/genética
18.
Front Genet ; 11: 842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193566

RESUMO

The proliferation and differentiation of chicken primary myoblasts (CPMs) play an important role in the development of skeletal muscle. In our previous research, RNA-seq analysis showed that microRNA-7 (miR-7) was relatively highly expressed in the proliferation phase of CPMs, but its expression level decreased significantly after CPMS-induced differentiation. Meanwhile, the mechanism by which the miR-7 regulates the proliferation and differentiation of CPMs is still unknown. In this study, we found that the expression levels of miR-7 and the Krüppel-like factor 4 (KLF4) gene were negatively correlated during the embryonic phase, and in vitro induced differentiation. A dual-luciferase assay and a rescue experiment show that there is a target relationship between miR-7 and the KLF4 gene. Meanwhile, the results show that overexpression of miR-7 inhibited the proliferation and differentiation of CPMs, while inhibition of miR-7 had the opposite effects. Furthermore, overexpression of the KLF4 gene was found to significantly promote the proliferation and differentiation of CPMs. Conversely, inhibition of the KLF4 gene was able to significantly decrease the proliferation and differentiation of CPMs. Our results demonstrate, for the first time, that miR-7 inhibits the proliferation and differentiation of myoblasts by targeting the KLF4 gene in chicken primary myoblasts.

19.
Dalton Trans ; 49(22): 7488-7495, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32441289

RESUMO

A two-dimensional Cd(ii) metal-organic framework (MOF) was constructed from a tris(pyridinium)-based hexacarboxylate zwitterionic ligand. The MOF shows a novel fashion of 2-fold 2D → 2D parallel entanglement. It is the entanglement that dictates close interlayer contacts between carboxylate (electron donor) and pyridinium (acceptor), which in turn impart the MOF with reversible photochromic properties through photoinduced electron transfer (PET). This is an extension of PET-based photochromism from bipyridinium to multipyridinium compounds. Thanks to the photoresponsive behaviour, the fluorescence of the MOF can be reversibly modulated or switched by photoirradiation. Besides, the fluorescence of the water-stable MOF in aqueous dispersion is very sensitive to nitrofuran antibiotics with high selectivity, and therefore the MOF is a good candidate of efficient and regenerable sensing material for determination of the antibiotics in water media.


Assuntos
Antibacterianos/análise , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Nitrofuranos/análise , Compostos de Piridínio/química , Corantes Fluorescentes/síntese química , Estruturas Metalorgânicas/síntese química , Processos Fotoquímicos , Compostos de Piridínio/síntese química , Espectrometria de Fluorescência
20.
Angew Chem Int Ed Engl ; 59(3): 1176-1180, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31778293

RESUMO

A cooperative Cu/Pd-catalyzed enantioselective synthesis of multisubstituted allenes is established. By employing chiral sulfoxide phosphine (SOP)/Cu and PdCl2 (dppf) complexes as catalysts, the 1,4-arylboration of 1,3-enynes provides an efficient approach to trisubstituted chiral allenes with up to 92 % yield and 97:3 er. Furthermore, by using 2-substituted 1,3-enynes as substrates, the tetrasubstituted chiral allenes were successfully generated using this strategy. Finally, theoretical calculations indicate that the transmetallation of the allenylcopper species is the rate-limiting step of this transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA