Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Genome Res ; 34(7): 981-996, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39122473

RESUMO

Fish show variation in feeding habits to adapt to complex environments. However, the genetic basis of feeding preference and the corresponding metabolic strategies that differentiate feeding habits remain elusive. Here, by comparing the whole genome of a typical carnivorous fish (Leiocassis longirostris Günther) with that of herbivorous fish, we identify 250 genes through both positive selection and rapid evolution, including taste receptor taste receptor type 1 member 3 (tas1r3) and trypsin We demonstrate that tas1r3 is required for carnivore preference in tas1r3-deficient zebrafish and in a diet-shifted grass carp model. We confirm that trypsin correlates with the metabolic strategies of fish with distinct feeding habits. Furthermore, marked alterations in trypsin activity and metabolic profiles are accompanied by a transition of feeding preference in tas1r3-deficient zebrafish and diet-shifted grass carp. Our results reveal a conserved adaptation between feeding preference and corresponding metabolic strategies in fish, and provide novel insights into the adaptation of feeding habits over the evolution course.


Assuntos
Genoma , Receptores Acoplados a Proteínas G , Peixe-Zebra , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/genética , Comportamento Alimentar , Carpas/genética , Carpas/metabolismo , Preferências Alimentares , Carnivoridade , Evolução Molecular
2.
Science ; 384(6701): 1247-1253, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870289

RESUMO

Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.


Assuntos
Complexo I de Transporte de Elétrons , Isquemia , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Isquemia/enzimologia , Bicamadas Lipídicas/metabolismo , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Bovinos , Ubiquinona/química , Ubiquinona/metabolismo , Conformação Proteica em alfa-Hélice
3.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732518

RESUMO

Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h. Moreover, VD3 anabolism in zebrafish was significantly suppressed in a time-dependent manner under short-fasting conditions. After fasting for 24 or 48 h, zebrafish fed with VD3 displayed a higher gluconeogenesis level and lower glycolysis level in the liver, and the serum glucose was maintained at higher levels, compared to those fed without VD3. Additionally, VD3 augmented the expression of fatty acids (FAs) transporter cd36 and lipogenesis in the liver, while enhancing lipolysis in the dorsal muscle. Similar results were obtained in cyp2r1-/- zebrafish, in which VD3 metabolism is obstructed. Importantly, it was observed that VD3 induced the production of gut GLP-1, which is considered to possess a potent gluconeogenic function in zebrafish. Meanwhile, the gene expression of proprotein convertase subtilisin/kexin type 1 (pcsk1), a GLP-1 processing enzyme, was also induced in the intestine of short-term fasted zebrafish. Notably, gut microbiota and its metabolite acetate were involved in VD3-regulated pcsk1 expression and GLP-1 production under short-term fasting conditions. In summary, our study demonstrated that VD3 regulated GLP-1 production in zebrafish by influencing gut microbiota and its metabolite, contributing to energy homeostasis and ameliorating hypoglycemia under short-term fasting conditions.


Assuntos
Colecalciferol , Metabolismo Energético , Jejum , Homeostase , Peixe-Zebra , Animais , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Fígado/metabolismo , Gluconeogênese , Microbioma Gastrointestinal/fisiologia , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124275, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615419

RESUMO

Peroxynitrite (ONOO-) is one of the most significant reactive oxygen species (ROS) in living cells. Zn2+ in living cells plays an essential part in different physiological processes. The abnormal concentration of ONOO- and Zn2+ in living cells are related to many kinds of diseases, such as anemia, epilepsy, diarrhea, Alzheimer's disease, and so on. The relationship of ONOO- and Zn2+ in living cells when the relative disease occurs remains unknown. So we develop the first probe H-1 for detecting ONOO- and Zn2+ at the same time. The probe H-1 shows high selectivity, good anti-interference capability, low detection limit and short response time to ONOO- and Zn2+. When the probe was applied to detect ONOO- and Zn2+ in HeLa cells, we could observe the fluorescence changing in the green and blue channels separately without interference in real time. It has the potential to employ the relation of ONOO- and Zn2+ in some disease mechanism research.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Espectrometria de Fluorescência , Zinco , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Zinco/análise , Células HeLa , Ácido Peroxinitroso/análise , Limite de Detecção
5.
J Fluoresc ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676771

RESUMO

As one of the most significant parameters in cellular microenvironment, viscosity levels could be used to determine the metabolic process of bioactive substances within cells. Abnormal viscosity levels are closely associated with a series of diseases. Therefore, the design and synthesis of fluorescent probes that can monitor changes of intracellular viscosity in real-time is of great significance for the study of disease development process. Here, a new viscosity-recognized NIR fluorescence probe W1 based on quinoline-malonitrile is synthesized, and it is not susceptible to interference substances. Besides, AIE probe W1 shows fast response, excellent photostability, low cytotoxicity, good linear relationship between fluorescence intensity value and viscosity. Based on the above advantages, probe W1 is used to image the change of viscosity level in the cell model induced by nystatin.

6.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451917

RESUMO

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Assuntos
Testículo , Peixe-Zebra , Animais , Masculino , Feminino , Testículo/metabolismo , Peixe-Zebra/genética , Androgênios/genética , Androgênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual/genética , Estrogênios/genética
7.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477699

RESUMO

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Assuntos
Estrogênios , Esteroide 17-alfa-Hidroxilase , Vitelogeninas , Peixe-Zebra , Animais , Masculino , Esteroide 17-alfa-Hidroxilase/genética , Vitelogeninas/genética , Estrogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Compostos Benzidrílicos/toxicidade , Estradiol , Fenóis/toxicidade , Feminino , Fluorocarbonos/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo
8.
Zool Res ; 45(2): 355-366, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485505

RESUMO

Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males. However, the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood, especially in teleosts. In this study, cyp17a1-/- zebrafish ( Danio rerio) exhibited excessive visceral adipose tissue (VAT), lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis (DNL) enzymes. The assay for transposase accessible chromatin with sequencing (ATAC-seq) results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/- fish compared to cyp17a1+/+ male fish, including stearoyl-CoA desaturase ( scd) and fatty acid synthase ( fasn). Androgen response element (ARE) motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+ male fish but not in cyp17a1-/- fish. Both androgen receptor ( ar)-/- and wild-type (WT) zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue, lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis enzymes. The Ar agonist BMS-564929 reduced the content of VAT and lipid content, and down-regulated acetyl-CoA carboxylase a ( acaca), fasn, and scd expression. Mechanistically, the rescue effect of testosterone on cyp17a1-/- fish in terms of phenotypes was abolished when ar was additionally depleted. Collectively, these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish, thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts.


Assuntos
Androgênios , Lipogênese , Masculino , Animais , Androgênios/farmacologia , Lipogênese/genética , Peixe-Zebra/genética , Testosterona , Lipídeos , Transdução de Sinais , Cromatina
9.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339020

RESUMO

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Assuntos
Hormônios Peptídicos , Processos de Determinação Sexual , Peixe-Zebra , Animais , Feminino , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Hormônios Peptídicos/genética , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335062

RESUMO

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Assuntos
DNA Polimerase I , DNA Primase , Humanos , DNA Primase/genética , DNA Primase/metabolismo , Microscopia Crioeletrônica , DNA Polimerase I/genética , RNA , Replicação do DNA
12.
Biol Reprod ; 110(4): 761-771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38374691

RESUMO

Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.


Assuntos
Carpas , Ovário , Animais , Feminino , Ovário/metabolismo , Hipófise/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução
13.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177503

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Animais , Camundongos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
14.
J Nutr Biochem ; 123: 109473, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844767

RESUMO

Vitamin D (VD) is a steroid hormone that is widely known to play an important role in maintaining mineral homeostasis, and regulating various physiological functions. Our previous results demonstrated that the interruption of VD metabolism caused hyperglycemia in zebrafish. In the present study we further explored the mechanism that VD regulates glucose metabolism by maintaining intestinal homeostasis in zebrafish. Our results showed that the expression of several peptide hormones including gastric inhibitory peptide, peptide YY, and fibroblast growth factor 19 in the intestine decreased, while the expression of sodium glucose cotransporter-1 and gcg was increased in the intestine of the zebrafish fed with the VD3-deficient diet. Consistently, similar results were obtained in cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, the results obtained from germ-free zebrafish exhibited that VD-regulated glucose metabolism was partly dependent on the microbiota in zebrafish. Importantly, the transplantation of gut microbiota collected from cyp2r1-/- zebrafish to germ-free zebrafish led to hyperglycemic symptoms in the fish, which were associated with the altered structure and functions of the microbiota in cyp2r1-/- zebrafish. Interestingly, the treatments with acetate or Cetobacterium somerae, a potent acetate producer, lowered the glucose contents whereas augmented insulin expression in zebrafish larvae. Notably, acetate supplementation alleviated hyperglycemia in cyp2r1-/- zebrafish and other diabetic zebrafish. In conclusion, our study has demonstrated that VD modulates the gut microbiota-SCFAs-gastrointestinal hormone axis, contributing to the maintenance of glucose homeostasis.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Vitamina D/metabolismo , Intestinos/microbiologia , Glucose/metabolismo , Vitaminas/metabolismo , Homeostase , Acetatos
15.
Food Chem Toxicol ; 181: 114103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852353

RESUMO

There are several technical challenges and public issues concerning genome editing applications before they become viable in commercial aquaculture. Recently, we developed a novel strategy to generate all-female (AF) common carp, which exhibited a growth advantage over the control carp, using genetic editing through single gene-targeting manipulation. Here, we found that the body weight of the AF common carp was higher by 22.58% than that of the control common carp. Because the genotype of the AF common carp was cyp17a1+/-;XX, the contents of sex steroids were normally synthesized, as they were comparable to that of the control female carp. To evaluate the food safety of the AF carp, Wistar rats were fed a diet containing control female carp (control, C) or all-female (AF) carp at an incorporation rate of 5, 10 and 20% (w/w) for 90 days. Compared with those fed control carp, the rats fed AF common carp exhibited no significant difference in body weight, food intake, feed conversion ratio, hematology, serum biochemistry, urine test, relative organ weight, gross necropsy, and histopathological examination. This is the first food safety assessment of the farmed fish strain cultured using CRISPR/Cas9, which will further advance the fishery development of genome-edited animals.


Assuntos
Carpas , Edição de Genes , Feminino , Animais , Ratos , Ratos Wistar , Genótipo , Peso Corporal , Ração Animal/análise , Dieta
16.
Biol Sex Differ ; 14(1): 53, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605245

RESUMO

BACKGROUND: Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS: Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17ß-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS: Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS: Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.


Assuntos
Caracteres Sexuais , Peixe-Zebra , Animais , Feminino , Masculino , Encéfalo , Sistemas Neurossecretores , Transdução de Sinais
17.
Front Nutr ; 10: 1187283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305084

RESUMO

Glucose metabolism in fish remains a controversial area of research as many fish species are traditionally considered glucose-intolerant. Although energy homeostasis remodeling has been observed in fish with inhibited fatty acid ß-oxidation (FAO), the effects and mechanism of the remodeling caused by blocked glucose uptake remain poorly understood. In this study, we blocked glucose uptake by knocking out glut2 in zebrafish. Intriguingly, the complete lethality, found in Glut2-null mice, was not observed in glut2-/- zebrafish. Approxiamately 30% of glut2-/- fish survived to adulthood and could reproduce. The maternal zygotic mutant glut2 (MZglut2) fish exhibited growth retardation, decreased blood and tissue glucose levels, and low locomotion activity. The decreased pancreatic ß-cell numbers and insulin expression, as well as liver insulin receptor a (insra), fatty acid synthesis (chrebp, srebf1, fasn, fads2, and scd), triglyceride synthesis (dgat1a), and muscle mechanistic target of rapamycin kinase (mtor) of MZglut2 zebrafish, suggest impaired insulin-dependent anabolic metabolism. Upregulated expression of lipolysis (atgl and lpl) and FAO genes (cpt1aa and cpt1ab) in the liver and proteolysis genes (bckdk, glud1b, and murf1a) in muscle were observed in the MZglut2 zebrafish, as well as elevated levels of P-AMPK proteins in both the liver and muscle, indicating enhanced catabolic metabolism associated with AMPK signaling. In addition, decreased amino acids and elevated carnitines of the MZglut2 zebrafish supported the decreased protein and lipid content of the whole fish. In summary, we found that blocked glucose uptake impaired insulin signaling-mediated anabolism via ß-cell loss, while AMPK signaling-mediated catabolism was enhanced. These findings reveal the mechanism of energy homeostasis remodeling caused by blocked glucose uptake, which may be a potential strategy for adapting to low glucose levels.

18.
J Muscle Res Cell Motil ; 44(3): 165-178, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115473

RESUMO

Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.


Assuntos
Actinas , Tomografia com Microscopia Eletrônica , Ratos , Animais , Actinas/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Mamíferos/metabolismo
19.
Gut Microbes ; 15(1): 2187575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36879441

RESUMO

Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of ß-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.


Assuntos
Microbioma Gastrointestinal , Vitamina D , Animais , Peixe-Zebra , Vitaminas , Acetatos , Clostridiales
20.
Front Endocrinol (Lausanne) ; 14: 1054665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864841

RESUMO

Introduction: 1α,25-dihydroxyvitamin D3 (1α,25[OH]2VD3) is a hormone known for its key roles in calcium absorption and nutrient metabolism. In teleost fishes, 1α,25(OH)2VD3 insufficiency causes impaired glucose metabolism and lipid oxidation. However, the cascade and mechanisms of 1α,25(OH)2VD3 and the vitamin d receptor (VDR) signaling are unclear. Results: In this study, two genes (vdra and vdrb) encoding paralogs of VDRs were genetically knocked out in zebrafish. Growth retardation and accumulated visceral adipose tissue have been observed in vdra -/-;vdrb -/- deficient line. In the liver elevated accumulation of triglycerides and suppressed lipid oxidation were detected. Morover significantly elevated 1α,25(OH)2VD3 levels were detected in vdra-/-;vdrb-/- zebrafish due to cyp24a1 transcription repression. Furthermore VDRs ablation Enhanced insulin signaling including elevated insulin/insra trancriptional levels, glycolysis, lipogenesis and promoted AKT/mTOR activity. Discussion: In conclusion, our present studies provides a zebrafish model with an elevated 1α,25(OH)2VD3 levels in vivo. The 1α,25(OH)2VD3/VDRs signaling promote lipid oxidation activity. However 1α,25(OH)2VD3 activity of regulation of glucose homeostasis through Insulin/Insr was independent of nuclear VDRs in teleosts.


Assuntos
Insulina , Fígado , Receptores de Calcitriol , Peixe-Zebra , Animais , Insulina/metabolismo , Lipídeos , Transdução de Sinais , Peixe-Zebra/genética , Receptores de Calcitriol/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA