Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Environ Pollut ; : 124482, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960118

RESUMO

Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread.

2.
Sci Total Environ ; 948: 174715, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39002592

RESUMO

Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Rios , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Águas Residuárias/química , Preparações Farmacêuticas/análise , Rios/química , Eliminação de Resíduos Líquidos/métodos
3.
Sci Total Environ ; 948: 174392, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38955277

RESUMO

Neonicotinoid pollution has increased rapidly and globally in recent years, posing significant risks to agricultural areas. Quantifying use and emission, transport and fate of these contaminants, and risks is critical for proper management of neonicotinoids in river basin. This study elucidates use and emissions of neonicotinoid pesticides in a typical large-scale agriculture basin of China, the Pearl River Basin, as well as the resulting agricultural non-point source pollution and related ecological risks using market surveys, data analysis, and the Soil and Water Assessment Tool. Neonicotinoid use in the basin was estimated at 1361 t in 2019, of which 83.1 % was used in agriculture. After application, approximately 99.1 t neonicotinoids were transported to the Pearl River, accounting for 7.2 % of the total applied. Estimated aquatic concentrations of neonicotinoids showed three seasonal peaks. Several distinct groups of neonicotinoid chemicals can be observed in the Pearl River, as estimated by the model. An estimated 3.9 % of the neonicotinoids used were transported to the South China Sea. Based on the present risk assessment result, several neonicotinoids posed risks to aquatic organism. Therefore, the use of alternative products and/or reduced use is deemed necessary. This study provides novel insights into the fate and ecological risks of neonicotinoid insecticides in large-scale watersheds, and underscores the need for greater efficiency of use and extensive environmental monitoring.


Assuntos
Agricultura , Monitoramento Ambiental , Inseticidas , Neonicotinoides , Rios , Poluentes Químicos da Água , China , Inseticidas/análise , Rios/química , Poluentes Químicos da Água/análise , Neonicotinoides/análise , Medição de Risco
4.
J Hazard Mater ; 476: 135081, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38964036

RESUMO

Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.


Assuntos
Fluorocarbonos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Fluorocarbonos/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos , Medição de Risco , Esgotos , Biodegradação Ambiental
5.
Bull Environ Contam Toxicol ; 113(2): 19, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080019

RESUMO

Environmental concentrations of antimicrobials can inhibit Cyanobacteria, but little is known about their effects on Cyanobacteria-blooming freshwater ecosystem. Here, a 21 days' outdoor freshwater mesocosm experiment was established to study effects of single and combined tetracycline, triclocarban and zinc at environmental concentrations on microbial community, microbial function and antimicrobial resistance using amplicon- and metagenomic-based methods. Results showed that three chemicals reshaped the microbial community with magnified effects by chemical combinations. Relative abundance of Cyanobacteria was decreased in all chemical groups, especially from 74.5 to 0.9% in combination of three chemicals. Microbial community networks were more simplified after exposure. Proteobacteria and Bacteroidetes predominated in Cyanobacteria-degraded ecosystems, and their relative abundances were significantly correlated with antibiotic resistome, suggesting that they might host antibiotic resistance genes. Notably, relative abundance (copy per 16 S rRNA gene) of total antibiotic resistome reached five to nine folds higher than the initial abundance in chemical-combined groups. The affected antibiotic resistance genes referred to a wide range of antibiotic classes. However, weak effects were detected on biocide/metal resistance and microbial virulence. Three chemicals posed complicated effects on microbial function, some of which had consistent variations across the groups, while some varied greatly in chemical groups. The findings highlight sensitivity of Cyanobacteria-blooming ecosystem to antimicrobials.


Assuntos
Carbanilidas , Cianobactérias , Ecossistema , Água Doce , Poluentes Químicos da Água , Zinco , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Zinco/toxicidade , Carbanilidas/toxicidade , Água Doce/microbiologia , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Microbiota/efeitos dos fármacos
6.
Environ Sci Pollut Res Int ; 31(35): 48048-48061, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017878

RESUMO

Road transportation is an important contributor to carbon emissions. China's car ownership is rapidly increasing, ranking first worldwide; however, there are limited data about carbon emission inventories. This study assesses carbon emissions from road transportation from the past to the future across China, using market survey, COPERT (Computer Programme to Calculate Emissions from Road Transport) model, and a combination method of principal component analysis and backpropagation neural network. From 2000 to 2020, the national carbon emissions from road transportation grew from 11.9 to 33.8 Mt CO2e, accounting for 0.47% of national total emissions by then. Trucks generally emit a higher proportion (77.3%) of total emissions than passenger cars (18.9%); however, the emission proportion of passenger cars (18.9-31.0%) has increased yearly. The carbon emissions at the prefecture level show an urban agglomeration trend, decreasing from the eastern coastal areas to central China. Future car ownership is expected to grow rapidly at 3.1% during 2021-2049, but only half of that growth rate during 2051-2060. Those vehicles are expected to contribute carbon emissions of 27.2-39.1 Mt CO2e under different scenarios in 2060. Scientifically reducing emissions and innovatively reducing the carbon emission coefficient, combined with a reasonable new energy vehicle growth scenario, are efficient methods for reducing national carbon levels. This study demonstrates that the uncertainty is within an acceptable range. This work details the carbon emission inventories associated with road transportation in China and provides basic data for developing a better carbon reduction policy for China's car industry.


Assuntos
Carbono , Meios de Transporte , Emissões de Veículos , China , Emissões de Veículos/análise , Carbono/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
7.
Environ Sci Technol ; 58(29): 13056-13064, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900493

RESUMO

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.


Assuntos
Chuva , Borracha , Cidades , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China
8.
Sci Total Environ ; 932: 172872, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692322

RESUMO

The misuse of antitussives preparations is a continuing problem in the world, and imply that they might have potential new psychoactive substances (NPS) activity. However, few study focus on their ecological toxicity towards fish. In the present study, the machine learning (ML) methods gcForest and random forest (RF) were employed to predict NPS activity in 30 antitussives. The potential toxic target, mode of action (MOA), acute toxicity and chronic toxicity to fish were further investigated. The results showed that both gcForest and RF achieved optimal performance when utilizing combined features of molecular fingerprint (MF) and molecular descriptor (MD), with area under the curve (AUC) = 0.99, accuracy >0.94 and f1 score > 0.94, and were applied to screen the NPS activity in antitussives. A total of 15 antitussives exhibited potential NPS activity, including frequently-used substances like codeine and dextromethorphan. The binding affinity of these antitussives with zebrafish dopamine transporter (zDAT) was high, and even surpassing that of some traditional narcotics and NPS. Some antitussives formed hydrogen bonds or salt bridges with aspartate (Asp) 95, tyrosine (Tyr) 171 of zDAT. For the ecotoxicity, the MOA of these 15 antitussives in fish was predicted as narcosis. The prenoxdiazin, pholcodine, codeine, dextromethorphan and dextrorphan exhibited very toxic/toxic to fish. It was necessary to pay close attention to the ecotoxicity of these antitussives. In this study, the integration of ML, molecular docking and ECOSAR approaches are powerful tools for understanding the toxicity profiles and ecological hazards posed by new pollutants.


Assuntos
Psicotrópicos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Psicotrópicos/toxicidade , Peixe-Zebra , Peixes , Aprendizado de Máquina
9.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38756954

RESUMO

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

10.
Environ Int ; 186: 108639, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603815

RESUMO

Antimicrobial resistance is considered to be one of the biggest public health problems, and airborne transmission is an important but under-appreciated pathway for the spread of antibiotic resistance genes (ARGs) in the environment. Previous research has shown pharmaceutical factories to be a major source of ARGs and antibiotic resistant bacteria (ARB) in the surrounding receiving water and soil environments. Pharmaceutical factories are hotspots of antibiotic resistance, but the atmospheric transmission and its environmental risk remain more concerns. Here, we conducted a metagenomic investigation into the airborne microbiome and resistome in three pharmaceutical factories in China. Soil (average: 38.45%) and wastewater (average: 28.53%) were major contributors of airborne resistome. ARGs (vanR/vanS, blaOXA, and CfxA) conferring resistance to critically important clinically used antibiotics were identified in the air samples. The wastewater treatment area had significantly higher relative abundances of ARGs (average: 0.64 copies/16S rRNA). Approximately 28.2% of the detected airborne ARGs were found to be associated with plasmids, and this increased to about 50% in the wastewater treatment area. We have compiled a list of high-risk airborne ARGs found in pharmaceutical factories. Moreover, A total of 1,043 viral operational taxonomic units were identified and linked to 47 family-group taxa. Different CRISPR-Cas immune systems have been identified in bacterial hosts in response to phage infection. Similarly, higher phage abundance (average: 2451.70 PPM) was found in the air of the wastewater treatment area. Our data provide insights into the antibiotic resistance gene profiles and microbiome (bacterial and non-bacterial) in pharmaceutical factories and reveal the potential role of horizontal transfer in the spread of airborne ARGs, with implications for human and animal health.


Assuntos
Microbiologia do Ar , Antibacterianos , Microbiota , Águas Residuárias , Microbiota/genética , Microbiota/efeitos dos fármacos , China , Antibacterianos/farmacologia , Águas Residuárias/microbiologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
11.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652942

RESUMO

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Poluentes Ambientais , Estilo de Vida , Ácidos Ftálicos , Humanos , Disruptores Endócrinos/urina , Criança , Pré-Escolar , Masculino , Feminino , Exposição Ambiental/análise , China , Ácidos Ftálicos/urina , Poluentes Ambientais/urina , Fenóis/urina , Adulto , Hong Kong , Pais , Compostos Benzidrílicos/urina , População do Leste Asiático
12.
Sci Total Environ ; 927: 171876, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531445

RESUMO

Textile industry uses varieties of chemicals including per- and polyfluoroalkyl substances (PFAS). PFAS are known to be persistent and incompletely removed in wastewater treatment plants (WWTPs). So far, little is known about what types of PFAS are used in the textile industry and their potential risks. Here we investigated PFAS in two WWTPs and a receiving river of a textile industrial park in Guangxi, China, by using both target and non-target analyses over a two-year period. The target analysis identified 11 specific PFAS, while the non-target analysis revealed a list of 648 different PFAS, including both legacy and emerging substances. Notably, perfluorooctanoic acid (PFOA) was still the most prevalent compound detected. Of particular concern was the finding that the investigated WWTPs, which employs an A/O (Anaerobic/Aerobic) process, exhibited a poor removal efficiency for PFAS. The average removal rate was only 22.0 %, indicating that the current treatment processes are inadequate in effectively mitigating PFAS contamination. Correlation analysis further highlighted the potential for PFAS to be transported from WWTPs to the receiving river, revealing a significant and strong positive correlation between the PFAS in the WWTP effluent and those of the river. Perfluorooctanesulfonic acid (PFOS) and two emerging PFAS (DTXSID30240816 and DTXSID90240817) were identified to have high ecological risks in the receiving river. Notably, these two emerging PFAS are homologues, and their presence in WWTPs has been poorly reported. The findings highlight the wide use and persistence of PFAS in current textile WWTPs, indicating potential long term risks to the receiving environment.

13.
Sci Total Environ ; 927: 171991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547976

RESUMO

Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.


Assuntos
Água Subterrânea , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Monitoramento Ambiental , Bactérias/efeitos dos fármacos , Bactérias/genética
14.
Sci Total Environ ; 923: 171395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447730

RESUMO

Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations. Our findings revealed that AOA demonstrated the highest SMM removal efficiency and rate among the pure cultures, followed by Comammox Nitrospira, NOB, and AOB. However, the biotransformation of SMM by AOA N. gargensis is reversible, and the removal efficiency significantly decreased from 63.84 % at 167 h to 26.41 % at 807 h. On the contrary, the co-culture of AOA and NOB demonstrated enhanced and irreversible SMM removal efficiency compared to AOA alone. Furthermore, the presence of NOB altered the SMM biotransformation of AOA by metabolizing TP202 differently, possibly resulting from reduced nitrite accumulation. This study offers novel insights into the potential application of nitrifying communities for the removal of sulfonamide antibiotics (SAs) in engineered ecosystems.


Assuntos
Sulfamonometoxina , Sulfamonometoxina/metabolismo , Amônia/metabolismo , Ecossistema , Microbiologia do Solo , Oxirredução , Filogenia , Bactérias/metabolismo , Archaea/metabolismo , Nitrificação , Biotransformação , Antibacterianos/metabolismo , Sulfanilamida/metabolismo
15.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453063

RESUMO

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Imidazóis , Animais , Suplementos Nutricionais/análise , Dieta , NF-kappa B , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Azóis/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Estresse Oxidativo , Apoptose , Carpas/metabolismo
16.
Environ Sci Technol ; 58(14): 6370-6380, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38497719

RESUMO

The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.


Assuntos
Cadeia Alimentar , Fenilenodiaminas , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Poluentes Químicos da Água/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-38460577

RESUMO

Estrogens and androgens are typical steroid hormones and often occur together in contaminated aquatic environments, but their mixed effects in aquatic organisms have been less well reported. In this study, the endocrine disrupting effects of binary mixtures of 17ß-estradiol (E2) and testosterone (T) in western mosquitofish (Gambusia affinis) were assessed by analyzing the sex ratio, secondary sex characteristics, gonadal histology, and transcriptional expression of target genes related to the hypothalamic-pituitary-gonadal (HPG) axis in G. affinis (from embryos) continuously exposed to E2 (50 ng/L), T (T1: 50 ng/L; T2: 200 ng/L), and mixtures of both (E2 + T1: 50 + 50 ng/L; E2 + T2: 50 + 200 ng/L) for 119 d. The results showed that exposure to E2 + T1 and E2 + T2 reduced the length ratio of ray 4/6 ratio in male G. affinis, suggesting feminized phenomenon in male G. affinis. Furthermore, 16.7-38.5 % of female G. affinis showed masculinized anal fins and hemal spines when exposed to T alone and in combination with E2. Importantly, the transcriptional levels of certain target genes related to the HPG axis were significantly altered in G. affinis following exposure to E2 and T alone and in combinations. Moreover, exposure to E2 and T in combinations can lead to combined effects (such as synergistic and antagonistic effects) on the transcriptional levels of some genes. These results collectively suggest that exposure to environmentally relevant concentrations of E2 and T alone and in mixtures can impact the endocrine system of G. affinis, and may pose potential risks in aquatic systems.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Testosterona/metabolismo , Estradiol/metabolismo , Androgênios/toxicidade , Sistema Endócrino , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Huan Jing Ke Xue ; 45(2): 1004-1014, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471938

RESUMO

To understand the contamination characteristics and ecological risk of antibiotics in contaminated fields of pharmaceutical plants, samples of the surface soil, soil column, wastewater treatment process water, ground water, and residue dregs were collected from two typical antibiotic pharmaceutical plants in South and North China. A total of 87 commonly used antibiotics were quantified using ultrasound extraction-solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry. The results showed that a total of 31 antibiotics of five classes were detected in all types of samples, and the maximum concentrations at each sampling point in the surface soil, soil column, residue dregs, wastewater treatment process water, and groundwater were 420 ng·g-1, 595 ng·g-1, 139 ng·g-1, 1 151 ng·L-1, and 6.65 ng·L-1, respectively. Most of the antibiotics were found in the surface soil, showing a decreasing trend with the depth of the soil column. The ecological risk assessment indicated that sulfamethazine, sulfaquinoxaline, tetracycline, chlorotetracycline, and D-sorbitol were at higher risk. Improving the efficiency of antibiotic removal from pharmaceutical wastewater and preventing production shop leaks are effective measures of controlling antibiotic contamination into and around fields in pharmaceutical plants.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Poluentes Químicos da Água/análise , Águas Residuárias , Água/análise , China , Solo , Preparações Farmacêuticas
19.
Bull Environ Contam Toxicol ; 112(4): 51, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556558

RESUMO

Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.


Assuntos
Dopamina , Ketamina , Humanos , Animais , Camundongos , Dopamina/metabolismo , Dopamina/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ketamina/metabolismo , Ketamina/farmacologia , Larva , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
20.
Environ Int ; 185: 108540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428191

RESUMO

The contamination characteristics, migration patterns and health risks of per- and polyfluoroalkyl substances (PFAS) were investigated in 66 Chinese paper products by using target and non-target screening methods. Among 57 target PFASs, 5 and 6 PFASs were found in the hygiene paper products (

Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Fluorocarbonos/análise , Etanol , Alimentos , Inocuidade dos Alimentos , China , Ácidos Alcanossulfônicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA