Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1364409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680447

RESUMO

Deformable registration plays a fundamental and crucial role in scenarios such as surgical navigation and image-assisted analysis. While deformable registration methods based on unsupervised learning have shown remarkable success in predicting displacement fields with high accuracy, many existing registration networks are limited by the lack of multi-scale analysis, restricting comprehensive utilization of global and local features in the images. To address this limitation, we propose a novel registration network called multi-scale feature extraction-integration network (MF-Net). First, we propose a multiscale analysis strategy that enables the model to capture global and local semantic information in the image, thus facilitating accurate texture and detail registration. Additionally, we introduce grouped gated inception block (GI-Block) as the basic unit of the feature extractor, enabling the feature extractor to selectively extract quantitative features from images at various resolutions. Comparative experiments demonstrate the superior accuracy of our approach over existing methods.

2.
Front Neurosci ; 18: 1364338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486967

RESUMO

In clinical practice and research, the classification and diagnosis of neurological diseases such as Parkinson's Disease (PD) and Multiple System Atrophy (MSA) have long posed a significant challenge. Currently, deep learning, as a cutting-edge technology, has demonstrated immense potential in computer-aided diagnosis of PD and MSA. However, existing methods rely heavily on manually selecting key feature slices and segmenting regions of interest. This not only increases subjectivity and complexity in the classification process but also limits the model's comprehensive analysis of global data features. To address this issue, this paper proposes a novel 3D context-aware modeling framework, named 3D-CAM. It considers 3D contextual information based on an attention mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively integrates a Contextual Information Module and a Location Filtering Module. The Contextual Information Module can be applied to feature maps at any layer, effectively combining features from adjacent slices and utilizing an attention mechanism to focus on crucial features. The Location Filtering Module, on the other hand, is employed in the post-processing phase to filter significant slice segments of classification features. By employing this method in the fully automated classification of PD and MSA, an accuracy of 85.71%, a recall rate of 86.36%, and a precision of 90.48% were achieved. These results not only demonstrates potential for clinical applications, but also provides a novel perspective for medical image diagnosis, thereby offering robust support for accurate diagnosis of neurological diseases.

3.
Exp Ther Med ; 27(5): 183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515647

RESUMO

Intrauterine growth restriction (IUGR) with rapid postnatal catch-up growth is strongly associated with pulmonary vascular dysfunction in adulthood, whereas IUGR with delayed growth in early postnatal life results in long-term brain deficits. In the present study, it was hypothesized that IUGR with early moderate catch-up growth may alleviate pulmonary vascular remodeling in adulthood without affecting memory function. An IUGR model was established by restricting maternal nutrition during pregnancy. Different growth patterns were achieved by adjusting the litter size in each group during lactation. Rats meeting the weight requirement at weaning were selected for subsequent studies at three time points (3, 9 and 13 weeks). Cognitive function was evaluated using a Y-maze. Invasive hemodynamic measurements were conducted to measure the mean pulmonary arterial pressure (mPAP). In addition, primary pulmonary artery smooth muscle cells (PASMCs) and pulmonary vascular endothelial cells (PVECs) were cultured to investigate their role in the increase in mPAP following rapid catch-up growth. The results showed that memory function deficits in the rats in the delayed growth group were associated with reduced proliferation of neural stem cells in the subgranular zone of the hippocampus. Furthermore, moderate catch-up growth at the three time points improved memory function while maintaining a normal mPAP. In adult IUGR rats experiencing rapid catch-up growth, although memory function improved, elevated mPAP and medial thickening of pulmonary arterioles were observed. Additionally, PASMCs exhibited excessive proliferation, migration and anti-apoptotic activity in the rapid catch-up group, and PVECs also displayed excessive proliferation. These results suggested that moderate catch-up growth after IUGR is a better strategy for optimal cognition and cardiovascular health in adulthood compared with rapid catch-up growth or delayed growth.

4.
Am J Respir Cell Mol Biol ; 70(5): 400-413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301267

RESUMO

Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of ß-catenin by inhibiting the phosphorylation of Gsk3ß at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3ß/ß-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box , Epigênese Genética , Retardo do Crescimento Fetal , Glicogênio Sintase Quinase 3 beta , Hipertensão Pulmonar , MicroRNAs , Pericitos , Ratos Sprague-Dawley , Animais , Feminino , Humanos , Masculino , Ratos , beta Catenina/metabolismo , beta Catenina/genética , Movimento Celular/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pericitos/metabolismo , Pericitos/patologia
5.
BMC Pulm Med ; 23(1): 367, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784105

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the most challenging chronic lung disease for prematurity, with difficulties in early identification. Given lncRNA emerging as a novel biomarker and the regulator of ferroptosis, this study aims to develop a BPD predictive model based on ferroptosis-related lncRNAs (FRLs). METHODS: Using a rat model, we firstly explored mRNA levels of ferroptosis-related genes and ferrous iron accumulation in BPD rat lungs. Subsequently, a microarray dataset of umbilical cord tissue from 20 preterm infants with BPD and 34 preterm infants without BPD were downloaded from the Gene Expression Omnibus databases. Random forest and LASSO regression were conducted to identify diagnostic FRLs. Nomogram was used to construct a predictive BPD model based on the FRLs. Finally, umbilical cord blood lymphocytes of preterm infants born before 32 weeks gestational age and term infants were collected and determined the expression level of diagnostic FRLs by RT-qPCR. RESULTS: Increased iron accumulation and several dysregulated ferroptosis-associated genes were found in BPD rat lung tissues, indicating that ferroptosis was participating in the development of BPD. By exploring the microarray dataset of preterm infants with BPD, 6 FRLs, namely LINC00348, POT1-AS1, LINC01103, TTTY8, PACRG-AS1, LINC00691, were determined as diagnostic FRLs for modeling. The area under the receiver operator characteristic curve of the model was 0.932, showing good discrimination of BPD. In accordance with our analysis of microarray dataset, the mRNA levels of FRLs were significantly upregulated in umbilical cord blood lymphocytes from preterm infants who had high risk of BPD. CONCLUSION: The incorporation of FRLs into a predictive model offers a non-invasive approach to show promise in improving early detection and management of this challenging chronic lung disease in premature infant, enabling timely intervention and personalized treatment strategies.


Assuntos
Displasia Broncopulmonar , Ferroptose , RNA Longo não Codificante , Lactente , Recém-Nascido , Humanos , Animais , Ratos , Recém-Nascido Prematuro , Displasia Broncopulmonar/genética , RNA Longo não Codificante/genética , Ferroptose/genética , RNA Mensageiro , Ferro
6.
Diagnostics (Basel) ; 13(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046576

RESUMO

When deciding on a kidney tumor's diagnosis and treatment, it is critical to take its morphometry into account. It is challenging to undertake a quantitative analysis of the association between kidney tumor morphology and clinical outcomes due to a paucity of data and the need for the time-consuming manual measurement of imaging variables. To address this issue, an autonomous kidney segmentation technique, namely SegTGAN, is proposed in this paper, which is based on a conventional generative adversarial network model. Its core framework includes a discriminator network with multi-scale feature extraction and a fully convolutional generator network made up of densely linked blocks. For qualitative and quantitative comparisons with the SegTGAN technique, the widely used and related medical image segmentation networks U-Net, FCN, and SegAN are used. The experimental results show that the Dice similarity coefficient (DSC), volumetric overlap error (VOE), accuracy (ACC), and average surface distance (ASD) of SegTGAN on the Kits19 dataset reach 92.28%, 16.17%, 97.28%, and 0.61 mm, respectively. SegTGAN outscores all the other neural networks, which indicates that our proposed model has the potential to improve the accuracy of CT-based kidney segmentation.

7.
J Am Heart Assoc ; 11(24): e027177, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36533591

RESUMO

Background Intrauterine growth restriction (IUGR) is closely related to systemic or pulmonary hypertension (PH) in adulthood. Aberrant crosstalk between pulmonary vascular endothelial cells (PVECs) and pulmonary arterial smooth muscle cells (PASMCs) that is mediated by exosomes plays an essential role in the progression of PH. FoxM1 (Forkhead box M1) is a key transcription factor that governs many important biological processes. Methods and Results IUGR-induced PH rat models were established. Transwell plates were used to coculture PVECs and PASMCs. Exosomes were isolated from PVEC-derived medium, and a microRNA (miRNA) screening was proceeded to identify effects of IUGR on small RNAs enclosed within exosomes. Dual-Luciferase assay was performed to validate the predicted binding sites of miRNAs on FoxM1 3' untranslated region. FoxM1 inhibitor thiostrepton was used in IUGR-induced PH rats. In this study, we found that FoxM1 expression was remarkably increased in IUGR-induced PH, and PASMCs were regulated by PVECs through FoxM1 signaling in a non-contact way. An miRNA screening showed that miR-214-3p, miR-326-3p, and miR-125b-2-3p were downregulated in PVEC-derived exosomes of the IUGR group, which were associated with overexpression of FoxM1 and more significant proliferation and migration of PASMCs. Dual-Luciferase assay demonstrated that the 3 miRNAs directly targeted FoxM1 3' untranslated region. FoxM1 inhibition blocked the PVECs-PASMCs crosstalk and reversed the abnormal functions of PASMCs. In vivo, treatment with thiostrepton significantly reduced the severity of PH. Conclusions Transmission of exosomal miRNAs from PVECs regulated the functions of PASMCs via FoxM1 signaling, and FoxM1 may serve as a potential therapeutic target in IUGR-induced PH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Animais , Feminino , Ratos , Regiões 3' não Traduzidas , Movimento Celular , Proliferação de Células/genética , Células Endoteliais/metabolismo , Retardo do Crescimento Fetal , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar , Tioestreptona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA