Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Alzheimers Res Ther ; 16(1): 211, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358805

RESUMO

BACKGROUND: Recent magnetic resonance imaging (MRI) studies have established that brain iron accumulation might accelerate cognitive decline in Alzheimer's disease (AD) patients. Both normal aging and AD are associated with cerebral atrophy in specific regions. However, no studies have investigated aging- and AD-selective iron deposition-related cognitive changes during normal aging. Here, we applied quantitative susceptibility mapping (QSM) to detect iron levels in cortical signature regions and assessed the relationships among iron, atrophy, and cognitive changes in older adults. METHODS: In this Taizhou Imaging Study, 770 older adults (mean age 62.0 ± 4.93 years, 57.5% women) underwent brain MRI to measure brain iron and atrophy, of whom 219 underwent neuropsychological tests nearly every 12 months for up to a mean follow-up of 2.68 years. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Domain-specific cognitive scores were obtained from MoCA subscore components. Regional analyses were performed for cortical regions and 2 signature regions where atrophy affected by aging and AD only: Aging (AG) -specific and AD signature meta-ROIs. The QSM and cortical morphometry means of the above ROIs were also computed. RESULTS: Significant associations were found between QSM levels and cognitive scores. In particular, after adjusting for cortical thickness of regions of interest (ROIs), participants in the upper tertile of the cortical and AG-specific signature QSM exhibited worse ZMMSE than did those in the lower tertile [ ß = -0.104, p = 0.026; ß = -0.118, p = 0.021, respectively]. Longitudinal analysis suggested that QSM values in all ROIs might predict decline in ZMoCA and key domains such as attention and visuospatial function (all p < 0.05). Furthermore, iron levels were negatively correlated with classic MRI markers of cortical atrophy (cortical thickness, gray matter volume, and local gyrification index) in total, AG-specific signature and AD signature regions (all p < 0.05). CONCLUSION: AG- and AD-selective iron deposition was associated with atrophy and cognitive decline in elderly people, highlighting its potential as a neuroimaging marker for cognitive aging.


Assuntos
Atrofia , Encéfalo , Envelhecimento Cognitivo , Ferro , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Humanos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Idoso , Ferro/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Atrofia/patologia , Envelhecimento Cognitivo/fisiologia , China , Envelhecimento/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo
2.
Phytomedicine ; 135: 156152, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39413455

RESUMO

BACKGROUND: Pterosin B (PB) exhibits strong neuroprotective effects in vitro, but its therapeutic effect and underlying mechanism on Alzheimer's disease (AD) remain elusive. PURPOSE: This study aimed to investigate the anti-AD effect and mechanism of PB. STUDY DESIGN: The therapeutic effect and mechanism of PB were investigated in APP/PS1 mice and lipopolysaccharide (LPS)-induced BV-2 cells. METHODS: After 8 weeks of oral administration of PB or donepezil, the cognitive function was assessed using behavioral tests. Pathological damage was evaluated using histological analysis and immunohistochemical staining. Flow cytometry was applied to detect M1/M2 polarization. The expression levels of glycolysis- and oxidative phosphorylation-related proteins as well as enzyme activities were determined using Western blot and biochemical kits, respectively. The levels of inflammatory cytokines and Kruppel-like factor 5 (Klf5) were measured using enzyme-linked immunosorbent assay. AD biomarkers in serum were analyzed using single-molecular array. RNA sequencing identified the downstream molecules of Klf5, and interaction was evaluated using dual-luciferase reporter assay. RESULTS: Our findings demonstrated that PB effectively ameliorated cognitive impairment and reduced pathological damage in APP/PS1 mice. Furthermore, PB facilitated the transition of the phenotype of LPS-induced BV-2 cells from M1 to M2 by modulating metabolic reprogramming. Additionally, Klf5 had high expression levels in the serum of patients with AD, which strongly correlated with cognitive performance and AD biomarkers. PB downregulated Klf5 expression both in vitro and in vivo. Subsequently, poly-ADP ribosyl polymerase 14 (Parp14) was identified as a downstream molecule of Klf5 involved in regulating metabolic reprogramming, and PB regulated microglia M1/M2 polarization by inhibiting the Klf5/Parp14 pathway. CONCLUSION: The findings suggested that PB ameliorated cognitive dysfunction in AD by modulating microglia M1/M2 polarization via inhibiting Klf5/Parp14 pathway.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167344, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39004380

RESUMO

The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.


Assuntos
Lesões Encefálicas Traumáticas , Lobo Frontal , Hipocampo , Tiroxina , Animais , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/genética , Tiroxina/farmacologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Masculino , Modelos Animais de Doenças , Transcriptoma , Camundongos Endogâmicos C57BL , Redes Reguladoras de Genes/efeitos dos fármacos , Astrócitos/metabolismo , Microglia/metabolismo , Microglia/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/genética , Concussão Encefálica/patologia , Concussão Encefálica/complicações , Transdução de Sinais/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia
5.
QJM ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078211
6.
iScience ; 27(7): 110219, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021795

RESUMO

The resected pⅢA-N2 non-small-cell lung cancer (NSCLC) patients who could benefit from postoperative radiotherapy (PORT) are not well-defined. The study explored the role of PORT on EGFR mutant and wild-type NSCLC patients. We retrospectively searched for resected pIIIA-N2 lung adenocarcinoma patients who underwent EGFR mutation testing. 80 patients with EGFR wild-type and 85 patients with EGFR mutation were included. 62 patients received PORT. In overall population, the median disease-free survival (DFS) was improved in PORT arm compared to non-PORT arm (22.9 vs. 16.1 months; p = 0.036), along with higher 2-year locoregional recurrence-free survival (LRFS) rate (88.3% vs. 69.3%; p = 0.004). In EGFR wild-type patients, PORT was associated with a longer median DFS (23.3 vs. 17.2 months; p = 0.044), and a higher 2-year LRFS rate (86.8% vs. 61.9%; p = 0.012). In EGFR mutant patients, PORT was not significantly correlated with improved survival outcomes. EGFR wild-type may a biomarker to identify the cohort that benefits from PORT.

7.
Insect Sci ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881212

RESUMO

The Asian citrus psyllid, Diaphorina citri, is the primary vector of the HLB pathogen, Candidatus Liberibacter asiaticus (CLas). The acquisition of CLas shortens the developmental period of nymphs, accelerating the emergence into adulthood and thereby facilitating the spread of CLas. Cuticular proteins (CPs) are involved in insect emergence. In this study, we investigated the molecular mechanisms underlying CLas-promoted emergence in D. citri via CP mediation. Here, a total of 159 CP genes were first identified in the D. citri genome. Chromosomal location analysis revealed an uneven distribution of these CP genes across the 13 D. citri chromosomes. Proteomic analysis identified 54 differentially expressed CPs during D. citri emergence, with 14 CPs exhibiting significant differential expression after CLas acquisition. Five key genes, Dc18aa-1, Dc18aa-2, DcCPR-24, DcCPR-38 and DcCPR-58, were screened from the proteome and CLas acquisition. The silencing of these 5 genes through a modified feeding method significantly reduced the emergence rate and caused various abnormal phenotypes, indicating the crucial role that these genes play in D. citri emergence. This study provides a comprehensive overview of the role of CPs in D. citri and reveals that CLas can influence the emergence process of D. citri by regulating the expression of CPs. These key CPs may serve as potential targets for future research on controlling huanglongbing (HLB) transmission.

9.
Nat Med ; 30(6): 1680-1688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740994

RESUMO

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Angústia Psicológica , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Depressão/tratamento farmacológico , Ansiedade/tratamento farmacológico , Resultado do Tratamento , Intervalo Livre de Progressão , Adulto , Idoso de 80 Anos ou mais
10.
Nat Mater ; 23(9): 1208-1213, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38641696

RESUMO

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

11.
J Invest Dermatol ; 144(10): 2255-2266.e4, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38462125

RESUMO

The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes (KCs). KCs and melanocytes respond to UV exposure by eliciting a tanning response. However, how KCs and melanocytes interact in the absence of UV exposure is unknown. In this study, we demonstrate that after SPRY1 knockout in epidermal KCs, melanocyte stem cells in the hair follicle exit the niche without depleting the pool of these cells. We also found that melanocyte stem cells migrate to the epidermis in a p53/stem cell factor/C-KIT-dependent manner induced by a tanning-like response resulting from SPRY1 loss in epidermal KCs. Once there, these cells differentiate into functional melanocytes. These findings provide an example in which the migration of melanocyte stem cells to the epidermis is due to loss of SPRY1 in epidermal KCs and show the potential for developing therapies for skin pigmentation disorders by manipulating melanocyte stem cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Epiderme , Folículo Piloso , Queratinócitos , Melanócitos , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fator de Células-Tronco , Células-Tronco , Proteína Supressora de Tumor p53 , Melanócitos/metabolismo , Queratinócitos/metabolismo , Animais , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Folículo Piloso/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Células-Tronco/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , Epiderme/metabolismo , Epiderme/patologia , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Camundongos Knockout , Diferenciação Celular , Células Epidérmicas/metabolismo , Células Cultivadas , Humanos
12.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537134

RESUMO

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

13.
Fa Yi Xue Za Zhi ; 40(1): 64-69, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500463

RESUMO

Biological evidence is relatively common evidence in criminal cases, and it has strong probative power because it carries DNA information for individual identification. At the scene of fire-related cases, the complex thermal environment, the escape of trapped people, the firefighting and rescue operations, and the deliberate destruction of criminal suspects will all affect the biological evidence in the fire scene. Scholars at home and abroad have explored and studied the effectiveness of biological evidence identification in fire scenes, and found that the blood stains, semen stains, bones, etc. are the main biological evidence which can be easily recovered with DNA in fire scenes. In order to analyze the research status and development trend of biological evidence in fire scenes, this paper systematically sorts out the relevant research, mainly including the soot removal technology, appearance method of typical biological evidence, and possibility of identifying other biological evidence. This paper also prospects the next step of research direction, in order to provide reference for the identification of biological evidence and improve the value of biological evidence in fire scenes.


Assuntos
Manchas de Sangue , Líquidos Corporais , Incêndios , Humanos , Sêmen , DNA/genética
14.
Phys Chem Chem Phys ; 26(4): 3500-3515, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206084

RESUMO

Polymorphic transformation of molecular crystals is a fundamental phase transition process, and it is important practically in the chemical, material, biopharmaceutical, and energy storage industries. However, understanding of the transformation mechanism at the molecular level is poor due to the extreme simulating challenges in enhanced sampling and formulating order parameters (OPs) as the collective variables that can distinguish polymorphs with quite similar and complicated structures so as to describe the reaction coordinate. In this work, two kinds of OPs for CL-20 were constructed by the bond distances, bond orientations and relative orientations. A K-means clustering algorithm based on the Euclidean distance and sample weight was used to smooth the initial finite temperature string (FTS), and the minimum free energy path connecting ß-CL-20 and ε-CL-20 was sketched by the string method in collective variables, and the free energy profile along the path and the nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations. In comparison with the average-based sampling, the K-means clustering algorithm provided an improved convergence rate of FTS. The simulation of transformation was independent of OP types but was affected greatly by finite-size effects. A surface-mediated local nucleation mechanism was confirmed and the configuration located at the shoulder of potential of mean force, rather than overall maximum, was confirmed to be the critical nucleus formed by the cooperative effect of the intermolecular interactions. This work provides an effective way to explore the polymorphic transformation of caged molecular crystals at the molecular level.

15.
J Invest Dermatol ; 144(4): 774-785.e10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37827278

RESUMO

Psoriasis is characterized by excessive keratinocyte proliferation and immunocyte infiltration, but the underlying pathogenesis remains unclear. Aminoacyl-tRNA synthetases are universally expressed enzymes that catalyze the first step of protein synthesis. Glycyl-tRNA synthetase (GARS) is a member of the aminoacyl-tRNA synthetase family. In addition to its canonical function, we found that GARS was overexpressed in the serum and skin lesions of patients with psoriasis. Moreover, GARS was highly expressed in human skin keratinocytes, and GARS knockdown in keratinocytes suppressed cell proliferation and promoted apoptosis through NF-κB/MAPK signaling pathway. Moreover, intradermal injection of recombinant GARS protein caused skin thickening, angiogenesis, and IFN/TNF-driven skin inflammation. Intriguingly, the reported functional receptor for GARS, cadherin 6 (CDH6), was specifically expressed in vascular endothelial cells, and we found that keratinocyte-derived GARS promotes inflammation and angiogenesis of vascular endothelial cells through CDH6. In addition, intradermal injection of GARS aggravated the phenotype and angiogenesis in imiquimod-induced psoriasiform dermatitis models, whereas the psoriatic phenotype and angiogenesis were relieved after knockdown of GARS by adeno-associated virus. Taken together, the results of this study identify the critical role of GARS in the pathogenesis of psoriasis and suggest that blocking GARS may be a therapeutic approach for alleviating psoriasis.


Assuntos
Dermatite , Glicina-tRNA Ligase , Psoríase , Humanos , Angiogênese , Dermatite/patologia , Células Endoteliais/patologia , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , Psoríase/patologia , Pele/patologia
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166937, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926362

RESUMO

Traumatic brain injury (TBI) often results in a reduction of the capacity of cells to sustain energy demands, thus, compromising neuronal function and plasticity. Here we show that the mitochondrial activator humanin (HN) counteracts a TBI-related reduction in mitochondrial bioenergetics, including oxygen consumption rate. HN normalized the disruptive action of TBI on memory function, and restored levels of synaptic proteins (synapsin 1 and p-CREB). HN also counteracted TBI-related elevations of pro-inflammatory cytokines in plasma (TNF-α, INF-y, IL 17, IL 5, MCP 5, GCSF, RANNETS, sTNFRI) as well as in the hippocampus (gp-130 and p-STAT3). Gp-130 is an integral part of cytokine receptor impinging on STAT3 (Tyr-705) signaling. Furthermore, HN reduced astrocyte proliferation in TBI. The overall evidence suggests that HN plays an integral role in normalizing fundamental aspects of TBI pathology which are central to energy balance, brain function, and plasticity.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Doenças Mitocondriais , Ratos , Animais , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Proteínas Reguladoras de Apoptose , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Inflamação/tratamento farmacológico
17.
Front Cell Dev Biol ; 11: 1309557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078014

RESUMO

Melanocytes, which originate from the neuroectoderm, are specialized cells responsible for producing pigments and possessing a dendritic morphology. These cells migrate to the epidermis and follicles, contributing to skin and hair pigmentation during embryonic development. The remarkable self-renewal capacity of melanocytes enables them to effectively restore hair and skin pigmentation. The synthesis of melanin to safeguard the skin against damage caused by ultraviolet radiation, as well as the enigmatic immune function of melanocytes, demonstrate their indispensable contributions to maintaining cutaneous homeostasis. The regulation of cutaneous pigmentation involves an intricate network influenced by intrinsic cellular signals within melanocytes and extracellular cues. Therefore, this paper provides a comprehensive review of the role of melanocytes in skin biology. This in-depth analysis could open novel avenues for research aimed at the prevention and treatment of skin disorders.

18.
Front Immunol ; 14: 1273182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053996

RESUMO

Atopic dermatitis (AD) is one of the most common inflammatory skin diseases with complex pathogenesis involving epidermal barrier dysfunction, skin microbiome abnormalities and type-2-skewed immune dysregulation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays critical roles in various biological processes. However, the role of STAT3 in epidermal keratinocytes in AD remains unclear. In this study, we generated an epidermal keratinocyte-specific Stat3-deficient mouse strain (termed Stat3 cKO mice). After topical 2,4-dinitrochlorobenzene (DNCB) treatment, Stat3 cKO mice developed worsened AD-like skin inflammation with increased Ki67+ cells, decreased filaggrin and loricrin expression, and downregulated S100A9 and LL37. The dominant microbial population in Stat3 cKO mice changed from Ralstonia to Staphylococcus. DNCB-treated Stat3 cKO mice displayed more infiltrating type-2 inflammatory cells, including mast cells, eosinophils, and CD4+T cells, accompanied by increased skin IL-4 and serum IgE levels. Moreover, thymic stromal lymphopoietin (TSLP), mainly produced by keratinocytes, was highly expressed in the ear skin of Stat3 cKO mice and chemoattracted more TSLPR+ cells. TSLP blockade significantly alleviated DNCB-induced AD-like skin inflammation in Stat3 cKO mice. Thus, epidermal keratinocyte-specific STAT3 deficiency can aggravate AD-like skin inflammation in mice, possibly through TSLP dysregulation.


Assuntos
Dermatite Atópica , Animais , Camundongos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dinitroclorobenzeno , Inflamação/metabolismo , Queratinócitos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfopoietina do Estroma do Timo , Regulação para Cima
19.
Artigo em Inglês | MEDLINE | ID: mdl-38037566

RESUMO

Traumatic brain injury (TBI) results in metabolic deficits and functionally compromised tissue. The BDNF mimetic R13 has a significant positive effect on both tissue metabolism and behavioral outcome after TBI, indicating a promising therapeutic. To understand the mechanism of action for this intervention, we determined whether there was any association between the underlying metabolic insult and any improvement in resting state functional connectivity (FC) with MRI, or whether R13 acts through mechanisms unrelated to metabolic recovery. We found perfusion deficits could be reasonably approximated by reductions in mean diffusivity (MD) acutely after injury, because a majority of regions with low perfusion matched to regions of low MD, indicative of cell swelling. Injury alone resulted in reduced cross-brain FC and contralateral hyperconnectivity at 1d compared to sham and these were spatially coincident with regions of low MD. R13 intervention at 1-7d altered the tissue trajectory of MD pathology away from pseudo-normalization so that a greater volume of tissue remained with low MD at 7d. These same regions were associated with significant changes in cross-brain and contralateral FC in R13 treated rats compared to injured vehicle-treated rats. These data indicate a likely metabolic effect of R13 acutely after injury.

20.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983486

RESUMO

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos , Dioxigenases/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas Associadas aos Microtúbulos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA