Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891363

RESUMO

Antigenic imprinting, which describes the bias of the antibody response due to previous immune history, can influence vaccine effectiveness. While this phenomenon has been reported for viruses such as influenza, there is little understanding of how prior immune history affects the antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting through immunization with two Sarbecoviruses, the subgenus that includes SARS-CoV-2. Mice were immunized subsequently with two antigenically distinct Sarbecovirus strains, namely SARS-CoV-1 and SARS-CoV-2. We found that sequential heterologous immunization induced cross-reactive binding antibodies for both viruses and delayed the emergence of neutralizing antibody responses against the booster strain. Our results provide fundamental knowledge about the immune response to Sarbecovirus and important insights into the development of pan-sarbecovirus vaccines and guiding therapeutic interventions.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Animais , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Imunização , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
2.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089541

RESUMO

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Assuntos
COVID-19/imunologia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pandemias/prevenção & controle , Ligação Proteica/imunologia , Células Sf9 , Células Vero
3.
Cell Rep ; 35(8): 109173, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33991510

RESUMO

Individuals with the 2019 coronavirus disease (COVID-19) show varying severity of the disease, ranging from asymptomatic to requiring intensive care. Although monoclonal antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified, we still lack an understanding of the overall landscape of B cell receptor (BCR) repertoires in individuals with COVID-19. We use high-throughput sequencing of bulk and plasma B cells collected at multiple time points during infection to characterize signatures of the B cell response to SARS-CoV-2 in 19 individuals. Using principled statistical approaches, we associate differential features of BCRs with different disease severity. We identify 38 significantly expanded clonal lineages shared among individuals as candidates for responses specific to SARS-CoV-2. Using single-cell sequencing, we verify the reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identify the natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in some individuals. Our results provide insights important for development of rational therapies and vaccines against COVID-19.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Reações Cruzadas , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Antivirais/imunologia , COVID-19/genética , Epitopos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índice de Gravidade de Doença , Células Sf9 , Análise de Célula Única , Glicoproteína da Espícula de Coronavírus/imunologia
4.
ArXiv ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32699813

RESUMO

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.

5.
medRxiv ; 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32699862

RESUMO

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.

6.
bioRxiv ; 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511317

RESUMO

The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike. Whether these non-neutralizing antibody responses will lead to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding the antigenicity differences between SARS-CoV-2 and SARS-CoV, but also has important implications in vaccine.

7.
Cell Rep ; 31(9): 107725, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32426212

RESUMO

The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Receptores Virais/metabolismo , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Células Sf9 , Células Vero , Vacinas Virais/imunologia
8.
Cell Rep ; 31(9): 107725, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500101

RESUMO

The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.


Assuntos
Formação de Anticorpos , COVID-19/imunologia , Reações Cruzadas , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos/imunologia , COVID-19/sangue , COVID-19/virologia , Teste Sorológico para COVID-19 , Chlorocebus aethiops , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/virologia , Células Sf9 , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA