Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375464

RESUMO

Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.

2.
Nat Chem Biol ; 20(7): 877-884, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38172604

RESUMO

Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.


Assuntos
Códon de Terminação , Fatores de Terminação de Peptídeos , Ribossomos , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/química , Ribossomos/metabolismo , Ribossomos/genética , Humanos , Códon de Terminação/genética , Microscopia Crioeletrônica , Ubiquitinação , Terminação Traducional da Cadeia Peptídica , Modelos Moleculares , Biossíntese de Proteínas
3.
Nat Struct Mol Biol ; 29(8): 774-780, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35915257

RESUMO

The E2/E3 enzyme UBE2O ubiquitylates diverse clients to mediate important processes, including targeting unassembled 'orphan' proteins for quality control and clearing ribosomes during erythropoiesis. How quality-control factors, such as UBE2O, select clients on the basis of heterogeneous features is largely unknown. Here, we show that UBE2O client selection is regulated by ubiquitin binding and a cofactor, NAP1L1. Attaching a single ubiquitin onto a client enhances UBE2O binding and multi-mono-ubiquitylation. UBE2O also repurposes the histone chaperone NAP1L1 as an adapter to recruit a subset of clients. Cryo-EM structures of human UBE2O in complex with NAP1L1 reveal a malleable client recruitment interface that is autoinhibited by the intrinsically reactive UBC domain. Adding a ubiquitylated client identifies a distinct ubiquitin-binding SH3-like domain required for client selection. Our findings reveal how multivalency and a feed-forward mechanism drive the selection of protein quality-control clients.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Humanos , Proteína 1 de Modelagem do Nucleossomo , Ligação Proteica , Ribossomos/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
4.
Nature ; 608(7924): 803-807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859168

RESUMO

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes1-4. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide4-13, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals5. The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Proteínas de Membrana , Receptores de Interleucina-1 , Sphingobacterium , Receptores Toll-Like , Animais , Antivirais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Imunidade Inata , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Óperon/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/ultraestrutura , Sphingobacterium/química , Sphingobacterium/genética , Sphingobacterium/ultraestrutura , Sphingobacterium/virologia , Receptores Toll-Like/química , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/ultraestrutura
5.
Nat Struct Mol Biol ; 28(12): 1029-1037, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887561

RESUMO

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Ubiquitinas/metabolismo , Peixe-Zebra
6.
Trends Biochem Sci ; 46(9): 731-743, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966939

RESUMO

Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.


Assuntos
Biossíntese de Proteínas , Ribossomos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(14): 7776-7781, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193351

RESUMO

The Saccharomyces cerevisiae protein Ddi1 and its homologs in higher eukaryotes have been proposed to serve as shuttling factors that deliver ubiquitinated substrates to the proteasome. Although Ddi1 contains both ubiquitin-interacting UBA and proteasome-interacting UBL domains, the UBL domain is atypical, as it binds ubiquitin. Furthermore, unlike other shuttling factors, Ddi1 and its homologs contain a conserved helical domain (helical domain of Ddi1, HDD) and a retroviral-like protease (RVP) domain. The RVP domain is probably responsible for cleavage of the precursor of the transcription factor Nrf1 in higher eukaryotes, which results in the up-regulation of proteasomal subunit genes. However, enzymatic activity of the RVP domain has not yet been demonstrated, and the function of Ddi1 remains poorly understood. Here, we show that Ddi1 is a ubiquitin-dependent protease, which cleaves substrate proteins only when they are tagged with long ubiquitin chains (longer than about eight ubiquitins). The RVP domain is inactive in isolation, in contrast to its retroviral counterpart. Proteolytic activity of Ddi1 requires the HDD domain and is stimulated by the UBL domain, which mediates high-affinity interaction with the polyubiquitin chain. Compromising the activity of Ddi1 in yeast cells results in the accumulation of polyubiquitinated proteins. Aside from the proteasome, Ddi1 is the only known endoprotease that acts on polyubiquitinated substrates. Ddi1 and its homologs likely cleave polyubiquitinated substrates under conditions where proteasome function is compromised.


Assuntos
Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Proteínas de Transporte Vesicular/genética , Poliubiquitina/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Homologia de Sequência
8.
Cell Rep ; 30(7): 2106-2114.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075755

RESUMO

Ribosome-associated quality control (RQC) disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts. A key step of RQC is the cleavage of P-site tRNA by the endonuclease ANKZF1 (Vms1 in yeast) to release incompletely synthesized polypeptides from ribosomes for degradation. Re-use of the cleaved tRNA for translation requires re-addition of the universal 3'CCA nucleotides removed by ANKZF1. Here, we show that ELAC1 is both necessary and sufficient to remove the 2',3'-cyclic phosphate on ANKZF1-cleaved tRNAs to permit CCA re-addition by TRNT1. ELAC1 activity is optimized for tRNA recycling, whereas ELAC2, the essential RNase Z isoform in eukaryotes, is required to remove 3' trailers during tRNA biogenesis. Cells lacking ELAC1 specifically accumulate unrepaired tRNA intermediates upon the induction of ribosome stalling. Thus, optimal recycling of ANKZF1-cleaved tRNAs in vertebrates is achieved through the duplication and specialization of a conserved tRNA biosynthesis enzyme.


Assuntos
RNA de Transferência/metabolismo , Ribossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Humanos , Biossíntese de Proteínas , Controle de Qualidade , RNA de Transferência/genética , Ribossomos/genética , Proteínas Supressoras de Tumor/genética
9.
Nat Struct Mol Biol ; 26(5): 343-349, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011209

RESUMO

Aberrantly stalled ribosomes initiate the ribosome-associated quality control (RQC) and mRNA surveillance pathways for the degradation of potentially toxic peptides and faulty mRNAs. During RQC, ANKZF1 (yeast Vms1p) releases ubiquitinated nascent proteins from 60S ribosomal subunits for proteasomal degradation. Here, we use a cell-free system to show that ANKZF1 and Vms1p sever polypeptidyl-tRNAs on RQC complexes by precisely cleaving off the terminal 3'CCA nucleotides universal to all tRNAs. This produces a tRNA fragment that cannot be aminoacylated until its 3'CCA end is restored. The recycling of ANKZF1-cleaved tRNAs is intact in the mammalian cytosol via a two-step process that requires the removal of a 2',3'-cyclic phosphate and TRNT1, the sole CCA-adding enzyme that mediates tRNA biogenesis in eukaryotes. TRNT1 also discriminates between properly folded tRNA substrates and aberrant tRNA substrates, selectively tagging the latter for degradation. Thus, ANKZF1 liberates peptidyl-tRNAs from stalled ribosomes such that the tRNA is checked in an obligate way for integrity before reentry into the translation cycle.


Assuntos
Proteínas de Transporte/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Células HEK293 , Humanos , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA