Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 708, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942791

RESUMO

The order Orthoptera includes insects such as grasshoppers, katydids, and crickets, among which there are important species for ecosystem stability and pollination, as well as research organisms in different fields such as neurobiology, ecology, and evolution. Crickets, with more than 2,400 described species, are emerging as novel model research organisms, for their diversity, worldwide distribution, regeneration capacity, and their characteristic acoustic communication. Here we report the assembly and annotation of the first New World cricket, that of Gryllus longicercus Weissman & Gray 2019. The genome assembly, generated by combining 44.54 Gb of long reads from PacBio and 120.44 Gb of short Illumina reads, has a length of 1.85 Gb. The genome annotation yielded 19,715 transcripts from 14,789 gene models.


Assuntos
Genoma de Inseto , Gryllidae , Anotação de Sequência Molecular , Gryllidae/genética , Animais
2.
BMC Plant Biol ; 24(1): 58, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245701

RESUMO

BACKGROUND: Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS: We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS: The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.


Assuntos
Cucurbitaceae , Potyvirus , Cucurbitaceae/genética , Potyvirus/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas/genética
3.
Cardiovasc Res ; 120(1): 69-81, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078368

RESUMO

AIMS: Duchenne muscular dystrophy (DMD)-associated cardiomyopathy is a serious life-threatening complication, the mechanisms of which have not been fully established, and therefore no effective treatment is currently available. The purpose of the study was to identify new molecular signatures of the cardiomyopathy development in DMD. METHODS AND RESULTS: For modelling of DMD-associated cardiomyopathy, we prepared three pairs of isogenic control and dystrophin-deficient human induced pluripotent stem cell (hiPSC) lines. Two isogenic hiPSC lines were obtained by CRISPR/Cas9-mediated deletion of DMD exon 50 in unaffected cells generated from healthy donor and then differentiated into cardiomyocytes (hiPSC-CM). The latter were subjected to global transcriptomic and proteomic analyses followed by more in-depth investigation of selected pathway and pharmacological modulation of observed defects. Proteomic analysis indicated a decrease in the level of mitoNEET protein in dystrophin-deficient hiPSC-CM, suggesting alteration in iron metabolism. Further experiments demonstrated increased labile iron pool both in the cytoplasm and mitochondria, a decrease in ferroportin level and an increase in both ferritin and transferrin receptor in DMD hiPSC-CM. Importantly, CRISPR/Cas9-mediated correction of the mutation in the patient-derived hiPSC reversed the observed changes in iron metabolism and restored normal iron levels in cardiomyocytes. Moreover, treatment of DMD hiPSC-CM with deferoxamine (DFO, iron chelator) or pioglitazone (mitoNEET stabilizing compound) decreased the level of reactive oxygen species in DMD hiPSC-CM. CONCLUSION: To our knowledge, this study demonstrated for the first time impaired iron metabolism in human DMD cardiomyocytes, and potential reversal of this effect by correction of DMD mutation or pharmacological treatment. This implies that iron overload-regulating compounds may serve as novel therapeutic agents in DMD-associated cardiomyopathy.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Cardiomiopatias/metabolismo , Sistemas CRISPR-Cas , Distrofina , Edição de Genes/métodos , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/metabolismo , Proteômica
4.
Mol Ecol ; : e17240, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108558

RESUMO

Malaria is a mosquito-borne disease caused by protozoans of the genus Plasmodium that affects both humans and wildlife. The fitness consequences of infections by avian malaria are well known in birds, however, little information exists on its impact on mosquitoes. Here we study how Culex pipiens mosquitoes transcriptionally respond to infection by two different Plasmodium species, P. relictum and P. cathemerium, differing in their virulence (mortality rate) and transmissibility (parasite presence in exposed mosquitoes' saliva). We studied the mosquito response to the infection at three critical stages of parasite development: the formation of ookinetes at 24 h post-infection (hpi), the release of sporozoites into the hemocoel at 10 days post-infection (dpi), and the storage of sporozoites in the salivary glands at 21 dpi. For each time point, we characterized the gene expression of mosquitoes infected with each P. relictum and P. cathemerium and mosquitoes fed on an uninfected bird and, subsequently, compared their transcriptomic responses. Differential gene expression analysis showed that most transcriptomic changes occurred during the early infection stage (24 hpi), especially when comparing P. relictum and P. cathemerium-infected mosquitoes. Differentially expressed genes in mosquitoes infected with each species were related mainly to the metabolism of the immune response, trypsin, and other serine-proteases. We conclude that these differences in response may partly play a role in the differential virulence and transmissibility previously observed between P. relictum and P. cathemerium in Cx. pipiens.

5.
Proc Natl Acad Sci U S A ; 120(21): e2218506120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192168

RESUMO

Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição/genética , Células Germinativas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insetos/genética , Memória de Longo Prazo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(7): e2216640120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745781

RESUMO

The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting E93. Moreover, transcriptomic analysis indicates that E93 depletion results in important gene expression changes in the early embryo, and many of the differentially expressed genes are involved in development. Then, using public databases, we gathered E93 expression data in embryo and preadult stages, finding that embryonic expression of E93 is high in hemimetabolan species (whose juveniles, or nymphs, are similar to the adult) and low in holometabolans (whose juveniles, or larvae, are different from the adult). E93 expression is also low in Thysanoptera and in Hemiptera Sternorrhyncha, hemimetabolans with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 transcript levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. We propose the hypothesis that during evolution, a reduction of E93 expression in the embryo of hemimetabolans facilitated the larval development and the emergence of holometaboly. Independent decreases of E93 transcripts in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.


Assuntos
Hemípteros , Insetos , Animais , Insetos/metabolismo , Metamorfose Biológica/genética , Larva , Hemípteros/genética , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética
7.
Curr Top Dev Biol ; 147: 291-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337452

RESUMO

Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.


Assuntos
Gryllidae , Animais , Abelhas , Gryllidae/genética , Insetos
8.
Curr Opin Insect Sci ; 50: 100881, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123119

RESUMO

Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.


Assuntos
Edição de Genes , Gryllidae , Animais , Tecnologia de Alimentos , Edição de Genes/métodos , Genômica , Gryllidae/genética , Insetos/genética
9.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849771

RESUMO

The survival and evolution of a species is a function of the number of offspring it can produce. In insects, the number of eggs that an ovary can produce is a major determinant of reproductive capacity. Insect ovaries are made up of tubular egg-producing subunits called ovarioles, whose number largely determines the number of eggs that can be potentially laid. Ovariole number in Drosophila is directly determined by the number of cellular structures called terminal filaments, which are stacks of cells that assemble in the larval ovary. Elucidating the developmental and regulatory mechanisms of terminal filament formation is thus key to understanding the regulation of insect reproduction through ovariole number regulation. We systematically measured mRNA expression of all cells in the larval ovary at the beginning, middle, and end of terminal filament formation. We also separated somatic and germ line cells during these stages and assessed their tissue-specific gene expression during larval ovary development. We found that the number of differentially expressed somatic genes is highest during the late stages of terminal filament formation and includes many signaling pathways that govern ovary development. We also show that germ line tissue, in contrast, shows greater differential expression during early stages of terminal filament formation, and highly expressed germ line genes at these stages largely control cell division and DNA repair. We provide a tissue-specific and temporal transcriptomic dataset of gene expression in the developing larval ovary as a resource to study insect reproduction.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Expressão Gênica , Células Germinativas/metabolismo , Morfogênese/genética
10.
Mol Biol Evol ; 38(12): 5491-5513, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550378

RESUMO

Germ line specification is essential in sexually reproducing organisms. Despite their critical role, the evolutionary history of the genes that specify animal germ cells is heterogeneous and dynamic. In many insects, the gene oskar is required for the specification of the germ line. However, the germ line role of oskar is thought to be a derived role resulting from co-option from an ancestral somatic role. To address how evolutionary changes in protein sequence could have led to changes in the function of Oskar protein that enabled it to regulate germ line specification, we searched for oskar orthologs in 1,565 publicly available insect genomic and transcriptomic data sets. The earliest-diverging lineage in which we identified an oskar ortholog was the order Zygentoma (silverfish and firebrats), suggesting that oskar originated before the origin of winged insects. We noted some order-specific trends in oskar sequence evolution, including whole gene duplications, clade-specific losses, and rapid divergence. An alignment of all known 379 Oskar sequences revealed new highly conserved residues as candidates that promote dimerization of the LOTUS domain. Moreover, we identified regions of the OSK domain with conserved predicted RNA binding potential. Furthermore, we show that despite a low overall amino acid conservation, the LOTUS domain shows higher conservation of predicted secondary structure than the OSK domain. Finally, we suggest new key amino acids in the LOTUS domain that may be involved in the previously reported Oskar-Vasa physical interaction that is required for its germ line role.


Assuntos
Proteínas de Drosophila , Drosophila , Sequência de Aminoácidos , Animais , RNA Helicases DEAD-box/genética , Drosophila/genética , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Oócitos/metabolismo
11.
Commun Biol ; 4(1): 733, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127782

RESUMO

Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.


Assuntos
Evolução Molecular , Genoma de Inseto/genética , Gryllidae/genética , Insetos/genética , Animais , Metilação de DNA , Elementos de DNA Transponíveis/genética , Feminino , Genes de Insetos/genética , Masculino , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
12.
Biochim Biophys Acta Gene Regul Mech ; 1864(6-7): 194704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895310

RESUMO

BACKGROUND: RNA interference (RNAi) is a cellular mechanism used to fight various threats, including transposons, aberrant RNAs, and some types of viruses. This mechanism relies on the detection of dsRNA molecules, which through a pathway involving Dicer-2 (Dcr-2) and Argonaute 2 (AGO2), produces small interfering RNAs (siRNAs) that bind to the complementary RNAs triggering their degradation. METHODS: Using the cockroach Blattella germanica as a model, we examined AGO2 activity by depleting its mRNA using RNAi and analyzing the phenotypes produced. RESULTS: Depleting AGO2 expression had no remarkable effect on nymphal development or reproduction. dsRNA treatment triggered an immediate and transitory increase in AGO2 expression, independently of Dcr-2 action. In addition, we analyzed the siRNAs generated after injecting a heterologous dsRNA in control and AGO2-depleted animals. The results revealed that obtained siRNAs mapped non-uniformly along the dsRNA sequence. In AGO2-depleted animals, the proportion of 22 nucleotide reads was higher and accumulations of reads appeared in areas less well-represented in the controls. We also detected a preference for cytosine as the first nucleotide in controls that was significantly attenuated in AGO2-depleted individuals. CONCLUSIONS/GENERAL SIGNIFICANCE: The siRNAs produced from a dsRNA mapped heterogeneously along the length of the dsRNA and this arrangement depends on the dsRNA sequence. AGO2 exerts its role as nuclease on the siRNA duplexes independently of its action on the corresponding mRNA. This study sheds light on an extremely useful process for reverse genetics in laboratories, in addition to the design of more effective, specific, and eco-friendly pest-control strategies.


Assuntos
Animais Geneticamente Modificados , Proteínas Argonautas/deficiência , Blattellidae , Inativação Gênica , Proteínas de Insetos/deficiência , RNA Interferente Pequeno , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas Argonautas/genética , Blattellidae/genética , Blattellidae/metabolismo , Proteínas de Insetos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
iScience ; 23(12): 101778, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33294787

RESUMO

The influence of DNA methylation on gene behavior and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies. Here, we have studied DNA methylation in the hemimetabolan insect Blattella germanica. In this cockroach, a gene involved in DNA methylation, DNA methyltransferase 1 (DNMT1), is expressed in early embryogenesis. In our experiments, RNAi of DNMT1 reduces DNA methylation and impairs blastoderm formation. Using reduced representation bisulfite sequencing and transcriptome analyses, we observed that methylated genes are associated with metabolism and are highly expressed, whereas unmethylated genes are related to signaling and show low expression. Moreover, methylated genes show greater expression change and less expression variability than unmethylated genes.

14.
Bioinformatics ; 36(Suppl_2): i618-i624, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33381847

RESUMO

MOTIVATION: microRNAs (miRNAs) are essential components of gene expression regulation at the post-transcriptional level. miRNAs have a well-defined molecular structure and this has facilitated the development of computational and high-throughput approaches to predict miRNAs genes. However, due to their short size, miRNAs have often been incorrectly annotated in both plants and animals. Consequently, published miRNA annotations and miRNA databases are enriched for false miRNAs, jeopardizing their utility as molecular information resources. To address this problem, we developed MirCure, a new software for quality control, filtering and curation of miRNA candidates. MirCure is an easy-to-use tool with a graphical interface that allows both scoring of miRNA reliability and browsing of supporting evidence by manual curators. RESULTS: Given a list of miRNA candidates, MirCure evaluates a number of miRNA-specific features based on gene expression, biogenesis and conservation data, and generates a score that can be used to discard poorly supported miRNA annotations. MirCure can also curate and adjust the annotation of the 5p and 3p arms based on user-provided small RNA-seq data. We evaluated MirCure on a set of manually curated animal and plant miRNAs and demonstrated great accuracy. Moreover, we show that MirCure can be used to revisit previous bona fide miRNAs annotations to improve miRNA databases. AVAILABILITY AND IMPLEMENTATION: The MirCure software and all the additional scripts used in this project are publicly available at https://github.com/ConesaLab/MirCure. A Docker image of MirCure is available at https://hub.docker.com/r/conesalab/mircure. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Animais , Biologia Computacional , MicroRNAs/genética , Plantas/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Software
15.
FEBS J ; 286(16): 3206-3221, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993896

RESUMO

In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus. We studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and polyneopteran species. B. germanica Zelda has the complete set of functional domains, which is typical of species displaying ancestral features concerning embryogenesis. Interestingly, we found D. melanogaster TAGteam heptamers in the B. germanica genome. The canonical one, CAGGTAG, is present at a similar proportion in the genome of these two species and in the genome of other insects, suggesting that the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving blastoderm formation and abdomen development, and genes contributing to these processes are down-regulated. We conclude that in B. germanica, Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived endopterygote insects. In B. germanica, zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed beyond this transition. In these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of zelda expression beyond the MZT in endopterygotes might be related with the evolutionary innovation of holometabolan metamorphosis. DATABASES: The RNA-seq datasets of B. germanica, D. melanogaster, and T. castaneum are accessible at the GEO databases GSE99785, GSE18068, GSE63770, and GSE84253. In addition, the RNA-seq library from T. castaneum adult females is available at SRA: SRX021963. The B. germanica reference genome is available as BioProject PRJNA203136.


Assuntos
Baratas/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas Nucleares/genética , Zigoto/metabolismo , Abdome/crescimento & desenvolvimento , Animais , Blastoderma/crescimento & desenvolvimento , Blastoderma/metabolismo , Padronização Corporal/genética , Cromatina/genética , Baratas/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Herança Materna/genética , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , RNA-Seq , Ativação Transcricional/genética , Zigoto/crescimento & desenvolvimento
16.
iScience ; 4: 164-179, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30240738

RESUMO

The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B. germanica and in the early-mid embryo in D. melanogaster. In B. germanica the maternal to zygotic transition (MZT) concentrates early in embryogenesis, when juvenile hormone factors are significantly expressed. In D. melanogaster, the MZT extends throughout embryogenesis, during which time juvenile hormone factors appear to be unimportant. These differences possibly reflect broad trends in the evolution of development within neopterans, related to the germband type and the metamorphosis mode.

17.
J Exp Zool B Mol Dev Evol ; 330(5): 254-264, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29998472

RESUMO

The German cockroach, Blattella germanica, is a worldwide pest that infests buildings, including homes, restaurants, and hospitals, often living in unsanitary conditions. As a disease vector and producer of allergens, this species has major health and economic impacts on humans. Factors contributing to the success of the German cockroach include its resistance to a broad range of insecticides, immunity to many pathogens, and its ability, as an extreme generalist omnivore, to survive on most food sources. The recently published genome shows that B. germanica has an exceptionally high number of protein coding genes. In this study, we investigate the functions of the 93 significantly expanded gene families with the aim to better understand the success of B. germanica as a major pest despite such inhospitable conditions. We find major expansions in gene families with functions related to the detoxification of insecticides and allelochemicals, defense against pathogens, digestion, sensory perception, and gene regulation. These expansions might have allowed B. germanica to develop multiple resistance mechanisms to insecticides and pathogens, and enabled a broad, flexible diet, thus explaining its success in unsanitary conditions and under recurrent chemical control. The findings and resources presented here provide insights for better understanding molecular mechanisms that will facilitate more effective cockroach control.


Assuntos
Blattellidae/genética , Blattellidae/imunologia , Proteínas de Insetos/genética , Animais , Blattellidae/metabolismo , Dieta , Evolução Molecular , Genoma de Inseto , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Resistência a Inseticidas/fisiologia , Família Multigênica , Controle de Pragas , Receptores de Superfície Celular/genética
18.
J Exp Zool B Mol Dev Evol ; 330(5): 288-295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975449

RESUMO

The Piwi-interacting RNA (piRNA) system is an evolutionarily conserved mechanism involved in the control of transposable elements and maintenance of genomic stability, especially in germ line cells and in early embryo stages. However, relevant particularities, both in mechanism and function, exist across species among metazoans and even within the insect class. As a member of the scarcely studied hemimetabolan group, Blattella germanica can be a suitable reference model to study insect evolution. We present the results of a stringent process of identification and study of expressed piRNAs for B. germanica across 11 developmental stages, ranging from unfertilized egg to nymphs and adult female. Our results confirm the dual origin of piRNA in this species, with a majority of them being generated from the primary pathway, and a smaller but highly expressed set of sequences participating in the secondary ("ping-pong") reamplification pathway. An intriguing partial complementarity in expression is observed between the piRNA of the two biogenesis pathways, with those generated in the secondary pathway being quite restricted to early embryo stages. In addition, many piRNAs are exclusively expressed in late embryo and nymphal stages. These observations point at piRNA functions beyond the role of transposon control in early embryogenesis. Our work supports the view of a more complex scenario, with different sets of piRNAs acting in different times and having a range of functions wider than previously thought.


Assuntos
Blattellidae/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Interferente Pequeno/genética , Animais , Evolução Biológica , Blattellidae/embriologia , Blattellidae/crescimento & desenvolvimento , Blattellidae/metabolismo , Elementos de DNA Transponíveis , Embrião não Mamífero , Feminino , Ninfa/genética , Ninfa/metabolismo , RNA Interferente Pequeno/metabolismo
19.
Nat Ecol Evol ; 2(3): 557-566, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29403074

RESUMO

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.


Assuntos
Blattellidae/genética , Evolução Molecular , Genoma , Isópteros/genética , Comportamento Social , Animais , Evolução Biológica , Blattellidae/fisiologia , Isópteros/fisiologia , Filogenia
20.
BMC Genomics ; 18(1): 774, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020923

RESUMO

BACKGROUND: Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. RESULTS: We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. CONCLUSION: miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.


Assuntos
Blástula/embriologia , Blattellidae/crescimento & desenvolvimento , Blattellidae/genética , Perfilação da Expressão Gênica , Metamorfose Biológica/genética , MicroRNAs/genética , Animais , Sequência de Bases , Blástula/metabolismo , Blattellidae/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA