Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787315

RESUMO

Rogue waves are an intriguing nonlinear phenomenon arising across different scales, ranging from ocean waves through optics to Bose-Einstein condensates. We describe the emergence of rogue wave-like dynamics in a reaction-diffusion system that arise as a result of a subcritical Turing instability. This state is present in a regime where all time-independent states are unstable and consists of intermittent excitation of spatially localized spikes, followed by collapse to an unstable state and subsequent regrowth. We characterize the spatiotemporal organization of spikes and show that in sufficiently large domains the dynamics are consistent with a memoryless process.

2.
Elife ; 122023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428017

RESUMO

Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.


Assuntos
Actinas , Dictyostelium , Humanos , Actinas/metabolismo , Movimento Celular , Transdução de Sinais , Fagocitose , Modelos Biológicos , Citoesqueleto de Actina/metabolismo
3.
Chaos ; 33(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192394

RESUMO

We study the existence and stability of propagating fronts in Meinhardt's multivariable reaction-diffusion model of branching in one spatial dimension. We identify a saddle-node-infinite-period bifurcation of fronts that leads to episodic front propagation in the parameter region below propagation failure and show that this state is stable. Stable constant speed fronts exist only above this parameter value. We use numerical continuation to show that propagation failure is a consequence of the presence of a T-point corresponding to the formation of a heteroclinic cycle in a spatial dynamics description. Additional T-points are identified that are responsible for a large multiplicity of different unstable traveling front-peak states. The results indicate that multivariable models may support new types of behavior that are absent from typical two-variable models but may nevertheless be important in developmental processes such as branching and somitogenesis.

4.
Phys Rev Lett ; 129(8): 088101, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053696

RESUMO

Self-organized patterns in the actin cytoskeleton are essential for eukaryotic cellular life. They are the building blocks of many functional structures that often operate simultaneously to facilitate, for example, nutrient uptake and movement of cells. However, identifying how qualitatively distinct actin patterns can coexist remains a challenge. Using bifurcation theory of a mass conserved activator-inhibitor system, we uncover a generic mechanism of how different actin waves-traveling waves and excitable pulses-organize and simultaneously emerge. Live-cell imaging experiments indeed reveal that narrow, planar, and fast-moving excitable pulses may coexist with ring-shaped macropinocytic actin waves in the cortex of motile amoeboid cells.


Assuntos
Actinas , Dictyostelium , Citoesqueleto de Actina , Membrana Celular , Movimento
5.
Chaos ; 32(12): 123129, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587350

RESUMO

We study the linear stability properties of spatially localized single- and multi-peak states generated in a subcritical Turing bifurcation in the Meinhardt model of branching. In one spatial dimension, these states are organized in a foliated snaking structure owing to peak-peak repulsion but are shown to be all linearly unstable, with the number of unstable modes increasing with the number of peaks present. Despite this, in two spatial dimensions, direct numerical simulations reveal the presence of stable single- and multi-spot states whose properties depend on the repulsion from nearby spots as well as the shape of the domain and the boundary conditions imposed thereon. Front propagation is shown to trigger the growth of new spots while destabilizing others. The results indicate that multi-variable models may support new types of behavior that are absent from typical two-variable models.

6.
Chaos ; 31(5): 051102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34240921

RESUMO

An understanding of the underlying mechanism of side-branching is paramount in controlling and/or therapeutically treating mammalian organs, such as lungs, kidneys, and glands. Motivated by an activator-inhibitor-substrate approach that is conjectured to dominate the initiation of side-branching in a pulmonary vascular pattern, I demonstrate a distinct transverse front instability in which new fingers grow out of an oscillatory breakup dynamics at the front line without any typical length scale. These two features are attributed to unstable peak solutions in 1D that subcritically emanate from Turing bifurcation and that exhibit repulsive interactions. The results are based on a bifurcation analysis and numerical simulations and provide a potential strategy toward also developing a framework of side-branching for other biological systems, such as plant roots and cellular protrusions.


Assuntos
Mamíferos , Modelos Biológicos , Animais , Morfogênese
7.
Phys Rev E ; 104(6): L062201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030930

RESUMO

Oscillons, i.e., immobile spatially localized but temporally oscillating structures, are the subject of intense study since their discovery in Faraday wave experiments. However, oscillons can also disappear and reappear at a shifted spatial location, becoming jumping oscillons (JOs). We explain here the origin of this behavior in a three-variable reaction-diffusion system via numerical continuation and bifurcation theory, and show that JOs are created via a modulational instability of excitable traveling pulses (TPs). We also reveal the presence of bound states of JOs and TPs and patches of such states (including jumping periodic patterns) and determine their stability. This rich multiplicity of spatiotemporal states lends itself to information and storage handling.

8.
Chaos ; 30(7): 073104, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32752648

RESUMO

Stationary periodic patterns are widespread in natural sciences, ranging from nano-scale electrochemical and amphiphilic systems to mesoscale fluid, chemical, and biological media and to macro-scale vegetation and cloud patterns. Their formation is usually due to a primary symmetry breaking of a uniform state to stripes, often followed by secondary instabilities to form zigzag and labyrinthine patterns. These secondary instabilities are well studied under idealized conditions of an infinite domain; however, on finite domains, the situation is more subtle since the unstable modes depend also on boundary conditions. Using two prototypical models, the Swift-Hohenberg equation and the forced complex Ginzburg-Landau equation, we consider finite size domains with no flux boundary conditions transversal to the stripes and reveal a distinct mixed-mode instability that lies in between the classical zigzag and the Eckhaus lines. This explains the stability of stripes in the mildly zigzag unstable regime and, after crossing the mixed-mode line, the evolution of zigzag stripes in the bulk of the domain and the formation of defects near the boundaries. The results are of particular importance for problems with large timescale separation, such as bulk-heterojunction deformations in organic photovoltaic and vegetation in semi-arid regions, where early temporal transients may play an important role.

9.
Cells ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585983

RESUMO

During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Humanos
10.
Chaos ; 30(2): 023120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113250

RESUMO

Frequency locking in forced oscillatory systems typically organizes in "V"-shaped domains in the plane spanned by the forcing frequency and amplitude, the so-called Arnol'd tongues. Here, we show that if the medium is spatially extended and monotonically heterogeneous, e.g., through spatially dependent natural frequency, the resonance tongues can also display "U" and "W" shapes; we refer to the latter as an "inverse camel" shape. We study the generic forced complex Ginzburg-Landau equation for damped oscillations under parametric forcing and, using linear stability analysis and numerical simulations, uncover the mechanisms that lead to these distinct resonance shapes. Additionally, we study the effects of discretization by exploring frequency locking of oscillator chains. Since we study a normal-form equation, the results are model-independent near the onset of oscillations and, therefore, applicable to inherently heterogeneous systems in general, such as the cochlea. The results are also applicable to controlling technological performances in various contexts, such as arrays of mechanical resonators, catalytic surface reactions, and nonlinear optics.

11.
Phys Rev E ; 101(2-1): 022213, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168571

RESUMO

Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding excitable pulses may exhibit solitonlike crossover and pulse nucleation if the system obeys a mass conservation constraint. In contrast to previous observations in systems without mass conservation, these alternative collision scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey conservation of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in cells, suggesting why they are so common, and why their dynamics is robust and long-lived.

12.
Phys Rev E ; 102(6-1): 062213, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466059

RESUMO

Optimizing the properties of the mosaic nanoscale morphology of bulk heterojunction (BHJ) organic photovoltaics (OPV) is not only challenging technologically but also intriguing from the mechanistic point of view. Among the recent breakthroughs is the identification and utilization of a three-phase (donor-mixed-acceptor) BHJ, where the (intermediate) mixed phase can inhibit mesoscale morphological changes, such as phase separation. Using a mean-field approach, we reveal and distinguish between generic mechanisms that alter, through transverse instabilities, the evolution of stripes: the bending (zigzag mode) and the pinching (cross-roll mode) of the donor-acceptor domains. The results are summarized in a parameter plane spanned by the mixing energy and illumination, and show that donor-acceptor mixtures with higher mixing energy are more likely to develop pinching under charge-flux boundary conditions. The latter is notorious as it leads to the formation of disconnected domains and hence to loss of charge flux. We believe that these results provide a qualitative road map for BHJ optimization, using mixed-phase composition and, therefore, an essential step toward long-lasting OPV. More broadly, the results are also of relevance to study the coexistence of multiple-phase domains in material science, such as in ion-intercalated rechargeable batteries.

13.
Sci Adv ; 4(10): eaau9663, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30397654

RESUMO

Liquid-liquid phase separation is mainly dependent on temperature and composition. Electric fields have also been shown to influence demixing of binary liquid mixtures. However, a puzzling behavior that remains elusive is the electric field-induced phase separation in ion-containing solvents at low voltages, as predicted by Tsori and Leibler. Here, we report the first experimental study of such a phenomenon in ionic liquid-silane mixtures, which not only results in phase separation at the electrode-electrolyte interface (EEI) but also is accompanied by deposition of porous structures of micrometer size on the electrode. This multiscale phenomenon at the EEI was found to be triggered by an electrochemically induced process. Using several analytical methods, we reveal the involved mechanism in which the formation of new Si-N bonds becomes unstable and eventually decomposes into the formation of silane-rich and silane-poor phases. The deposition of porous structures on the electrode surface is therefore a realization of the silane-rich phase. The finding of an electrochemically induced phase separation not only brings a paradigm shift in understanding the EEI in ionic liquids but also provides alternative strategies toward designing porous surfaces.

14.
Nat Commun ; 9(1): 4060, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301897

RESUMO

H2O2 is a sacrificial reductant that is often used as a hole scavenger to gain insight into photoanode properties. Here we show a distinct mechanism of H2O2 photo-oxidation on haematite (α-Fe2O3) photoanodes. We found that the photocurrent voltammograms display non-monotonous behaviour upon varying the H2O2 concentration, which is not in accord with a linear surface reaction mechanism that involves a single reaction site as in Eley-Rideal reactions. We postulate a nonlinear kinetic mechanism that involves concerted interaction between adions induced by H2O2 deprotonation in the alkaline solution with adjacent intermediate species of the water photo-oxidation reaction, thereby involving two reaction sites as in Langmuir-Hinshelwood reactions. The devised kinetic model reproduces our main observations and predicts coexistence of two surface reaction paths (bi-stability) in a certain range of potentials and H2O2 concentrations. This prediction is confirmed experimentally by observing a hysteresis loop in the photocurrent voltammogram measured in the predicted coexistence range.

15.
Phys Rev E ; 98(2-1): 020202, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253571

RESUMO

Frequency locking to an external forcing frequency is a well-known phenomenon. In the auditory system, it results in a localized traveling wave, the shape of which is essential for efficient discrimination between incoming frequencies. An amplitude equation approach is used to show that the shape of the localized traveling wave depends crucially on the relative strength of additive versus parametric forcing components; the stronger the parametric forcing, the more asymmetric is the response profile and the sharper is the traveling-wave front. The analysis qualitatively captures the empirically observed regions of linear and nonlinear responses and highlights the potential significance of parametric forcing mechanisms in shaping the resonant response in the inner ear.


Assuntos
Orelha Interna/fisiologia , Som , Humanos
16.
J Phys Chem Lett ; 9(1): 36-42, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29220577

RESUMO

The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.

17.
Phys Rev E ; 95(6-1): 060201, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709248

RESUMO

Ionic liquids are solvent-free electrolytes, some of which possess an intriguing self-assembly at finite length scale due to Coulombic interactions. Using a continuum framework (based on Onsager's relations), it is shown that bulk nanostructures arise via linear (supercritical) and nonlinear (subcritical) bifurcations (morphological phase transitions), which also directly affect the electrical double layer structure. A Ginzburg-Landau amplitude equation is derived and the bifurcation type is related to model parameters, such as temperature, potential, and interactions. Specifically, the nonlinear bifurcation occurs for geometrically dissimilar ions and, surprisingly, is induced by perturbations on the order of thermal fluctuations. Finally, qualitative insights and comparisons to the experimentally decaying charge layers within the electrical double layer are discussed.

18.
Nat Commun ; 8: 15863, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627511

RESUMO

During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction-diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed.


Assuntos
Actinas/metabolismo , Membrana Celular , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Camundongos , Microscopia Confocal/métodos , Modelos Teóricos , Células NIH 3T3 , Fosfatidilinositóis/metabolismo , Pinocitose , Polimerização
19.
Chaos ; 27(4): 043110, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456181

RESUMO

A generic mechanism for the emergence of spatially localized states embedded in an oscillatory background is demonstrated by using a 2:1 frequency locking oscillatory system. The localization is of Turing type and appears in two space dimensions as a comb-like state in either π phase shifted Hopf oscillations or inside a spiral core. Specifically, the localized states appear in absence of the well known flip-flop dynamics (associated with collapsed homoclinic snaking) that is known to arise in the vicinity of Hopf-Turing bifurcation in one space dimension. Derivation and analysis of three Hopf-Turing amplitude equations in two space dimensions reveal a local dynamics pinning mechanism for Hopf fronts, which in turn allows the emergence of perpendicular (to the Hopf front) Turing states. The results are shown to agree well with the comb-like core size that forms inside spiral waves. In the context of 2:1 resonance, these localized states form outside the 2:1 resonance region and thus extend the frequency locking domain for spatially extended media, such as periodically driven Belousov-Zhabotinsky chemical reactions. Implications to chlorite-iodide-malonic-acid and shaken granular media are also addressed.

20.
J Phys Chem Lett ; 7(7): 1121-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954098

RESUMO

Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA