Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 15(12): e2000278, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32846013

RESUMO

Integration of a large-sized DNA fragment into a chromosome is an important strategy for characterization of cellular functions in microorganisms. Magnetotactic bacteria synthesize intracellular organelles comprising membrane-bound single crystalline magnetite, also referred to as magnetosomes. Magnetosomes have gained interest in both scientific and engineering sectors as they can be utilized as a material for biomedical and nanotechnological applications. Although genetic engineering of magnetosome biosynthesis mechanism has been investigated, the current method requires cumbersome gene preparation processes. Here, the chromosomal integration of a plasmid containing ≈27 magnetosome genes (≈26 kbp region) in a non-magnetic mutant of Magnetospirillum magneticum AMB-1 using a broad-host-range plasmid is shown. The genome sequencing of gene-complemented strains reveals the chromosomal integration of the plasmid with magnetosome genes at a specific site, most likely by catalysis of an endogenous transposase. Magnetosome production is successfully enhanced by integrating a variation of magnetosome gene operons in the chromosome. This chromosomal integration mechanism will allow the design of functional magnetosomes de novo and M. magneticum AMB-1 may be used as a chassis for the designed magnetosome production.


Assuntos
Magnetossomos , Proteínas de Bactérias/genética , Óxido Ferroso-Férrico , Magnetossomos/genética , Magnetospirillum , Óperon
2.
Nat Mater ; 19(4): 391-396, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31636422

RESUMO

The nucleation of crystals has long been thought to occur through the stochastic association of ions, atoms or molecules to form critical nuclei, which will later grow out to crystals1. Only in the past decade has the awareness grown that crystallization can also proceed through the assembly of different types of building blocks2,3, including amorphous precursors4, primary particles5, prenucleation species6,7, dense liquid droplets8,9 or nanocrystals10. However, the forces that control these alternative pathways are still poorly understood. Here, we investigate the crystallization of magnetite (Fe3O4) through the formation and aggregation of primary particles and show that both the thermodynamics and the kinetics of the process can be described in terms of colloidal assembly. This model allows predicting the average crystal size at a given initial Fe concentration, thereby opening the way to the design of crystals with predefined sizes and properties.

3.
J Bacteriol ; 198(20): 2794-802, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481925

RESUMO

UNLABELLED: The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. IMPORTANCE: Magnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial regulation mechanism within the linear structure of magnetosomes. This discovery provides evidence of a highly regulated protein localization mechanism for this bacterial organelle development.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Cristalização , Óxido Ferroso-Férrico/química , Ferro/metabolismo , Magnetossomos/química , Magnetossomos/genética , Magnetospirillum/química , Magnetospirillum/genética , Oxirredução , Transporte Proteico
4.
Opt Express ; 19(13): 12008-13, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716435

RESUMO

We propose time-division based color electroholography with a one-chip RGB Light Emitting Diode (LED) and a low-priced synchronizing controller. In electroholography, although color reconstruction methods via time-division have already been proposed, the methods require an LCD with a high refresh rate and output signals from the LCD for synchronizing the RGB reference lights such as laser sources, which consequently increase the development cost. Instead of using such an LCD, the proposed method is capable of using a general LCD panel with a normal refresh rate of 60 Hz. In addition, the LCD panel used in the proposed method does not require the output signals from the LCD. Instead, we generated synchronized signals using an external controller developed by a low-priced one-chip microprocessor, and, use a one-chip RGB LED instead of lasers as the RGB reference lights. The one-chip LED allows us to decrease the development cost and to facilitate optical-axis alignment. Using this method, we observed a multi-color 3D reconstructed movie at a frame rate of 20 Hz.


Assuntos
Holografia/instrumentação , Holografia/métodos , Iluminação/instrumentação , Iluminação/métodos , Microcomputadores , Cor , Desenho de Equipamento , Lasers , Luz , Modelos Teóricos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA