Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(38): 24859-24865, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604667

RESUMO

Polydimethylsiloxane (PDMS) is widely used to fabricate microfluidic organs-on-chips. Using these devices (PDMS-based devices), the mechanical microenvironment of living tissues, such as pulmonary respiration and intestinal peristalsis, can be reproduced in vitro. However, the use of PDMS-based devices in drug discovery research is limited because of their extensive absorption of drugs. In this study, we investigated the feasibility of the tetrafluoroethylene-propylene (FEPM) elastomer to fabricate a hepatocyte-on-a-chip (FEPM-based hepatocyte chip) with lower drug absorption. The FEPM-based hepatocyte chip expressed drug-metabolizing enzymes, drug-conjugating enzymes, and drug transporters. Also, it could produce human albumin. Although the metabolites of midazolam and bufuralol were hardly detected in the PDMS-based hepatocyte chip, they were detected abundantly in the FEPM-based hepatocyte chip. Finally, coumarin-induced hepatocyte cytotoxicity was less severe in the PDMS-based hepatocyte chip than in the FEPM-based hepatocyte chip, reflecting the different drug absorptions of the two chips. In conclusion, the FEPM-based hepatocyte chip could be a useful tool in drug discovery research, including drug metabolism and toxicity studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA