Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 6(55)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135116

RESUMO

Mesobot, an autonomous underwater vehicle, addresses specific unmet needs for observing and sampling a variety of phenomena in the ocean's midwaters. The midwater hosts a vast biomass, has a role in regulating climate, and may soon be exploited commercially, yet our scientific understanding of it is incomplete. Mesobot has the ability to survey and track slow-moving animals and to correlate the animals' movements with critical environmental measurements. Mesobot will complement existing oceanographic assets such as towed, remotely operated, and autonomous vehicles; shipboard acoustic sensors; and net tows. Its potential to perform behavioral studies unobtrusively over long periods with substantial autonomy provides a capability that is not presently available to midwater researchers. The 250-kilogram marine robot can be teleoperated through a lightweight fiber optic tether and can also operate untethered with full autonomy while minimizing environmental disturbance. We present recent results illustrating the vehicle's ability to automatically track free-swimming hydromedusae (Solmissus sp.) and larvaceans (Bathochordaeus stygius) at depths of 200 meters in Monterey Bay, USA. In addition to these tracking missions, the vehicle can execute preprogrammed missions collecting image and sensor data while also carrying substantial auxiliary payloads such as cameras, sonars, and samplers.

3.
Bioinspir Biomim ; 15(3): 035003, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896095

RESUMO

We demonstrate that shape-changing or morphing fins provide a new paradigm for improving the ability of vehicles to maneuver and move rapidly underwater. An ingenuous solution is employed by fish to accommodate both the need for stability of locomotion and the ability to perform tight maneuvers: Retractable fins can alter the stability properties of a vehicle to suit their particular goals. Tunas, for example, are large fish that are fast swimmers and yet they need rapid turning agility to track the smaller fish they pursue; they have perfected the use of their dorsal and ventral fins to ensure stability when retracted and rapid turning when erected. Although fish employ unsteady propulsors rather than propellers, we show that engineering rigid-hull underwater vehicles can also exploit similar solutions. We explore the basic flow mechanisms and design considerations of employing morphing fins to alter the stability and maneuvering qualities of vehicles and apply unsteady forces and moments under active control. We also show results from maneuvering simulations and experiments on a model of an underwater vehicle.


Assuntos
Nadadeiras de Animais/fisiologia , Desenho de Equipamento/métodos , Veículos Automotores , Animais , Materiais Biomiméticos , Hidrodinâmica , Atum/fisiologia
4.
Environ Sci Technol ; 53(6): 2971-2980, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30829032

RESUMO

Industrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment. Dichlorodiphenyltrichloroethane (DDT) was reportedly dumped in the area, and sediment analysis revealed substantial variability in concentrations of p, p-DDT and its analogs, with a peak concentration of 257 µg g-1, ∼40 times greater than the highest level of surface sediment contamination at the nearby DDT Superfund site. The occurrence of a conspicuous hydrocarbon mixture suggests that multiple petroleum distillates, potentially used in DDT manufacture, contributed to the waste stream. Application of a two end-member mixing model with DDTs and polychlorinated biphenyls enabled source differentiation between shelf discharge versus containerized waste. Ocean dumping was found to be the major source of DDT to more than 3000 km2 of the region's deep seafloor. These results reveal that ocean dumping of containerized DDT waste was inherently sloppy, with the contents readily breaching containment and leading to regional scale contamination of the deep benthos.


Assuntos
Hidrocarbonetos Clorados , Bifenilos Policlorados , Poluentes Químicos da Água , California , DDT , Monitoramento Ambiental , Oceanos e Mares
5.
Sci Adv ; 4(1): e1701121, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326974

RESUMO

The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.

6.
Environ Sci Technol ; 50(20): 11057-11065, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27706934

RESUMO

Benthic accumulations of filamentous, mat-forming bacteria occur throughout the oceans where bisulfide mingles with oxygen or nitrate, providing key but poorly quantified linkages between elemental cycles of carbon, nitrogen and sulfur. Here we used the autonomous underwater vehicle Sentry to conduct a contiguous, 12.5 km photoimaging survey of sea-floor colonies of filamentous bacteria between 80 and 579 m water depth, spanning the continental shelf to the deep suboxic waters of the Santa Barbara Basin (SBB). The survey provided >31 000 images and revealed contiguous, white-colored bacterial colonization coating > ∼80% of the ocean floor and spanning over 1.6 km, between 487 and 523 m water depth. Based on their localization within the stratified waters of the SBB we hypothesize a dynamic and annular biogeochemical zonation by which the bacteria capitalize on periodic flushing events to accumulate and utilize nitrate. Oceanographic time series data bracket the imaging survey and indicate rapid and contemporaneous nitrate loss, while autonomous capture of microbial communities from the benthic boundary layer concurrent with imaging provides possible identities for the responsible bacteria. Based on these observations we explore the ecological context of such mats and their possible importance in the nitrogen cycle of the SBB.

7.
Nat Commun ; 5: 5385, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25384354

RESUMO

Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor.

8.
Proc Natl Acad Sci U S A ; 111(32): 11744-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071200

RESUMO

On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations.


Assuntos
Antozoários/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Poluição Química da Água/efeitos adversos , Animais , Ecossistema , Monitoramento Ambiental , Golfo do México
9.
Proc Natl Acad Sci U S A ; 109(50): 20235-9, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-21903931

RESUMO

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well's two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well's oil flow rate was approximately 0.10 ± 0.017 m(3) s(-1) at seafloor conditions, or approximately 85 ± 15 kg s(-1) (7.4 ± 1.3 Gg d(-1)), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s(-1) (2.1 ± 0.37 Gg d(-1)) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s(-1) (9.5 ± 1.6 Gg d(-1)).

10.
Science ; 330(6001): 201-4, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20724584

RESUMO

The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation. Samples collected from within the plume reveal monoaromatic petroleum hydrocarbon concentrations in excess of 50 micrograms per liter. These data indicate that monoaromatic input to this plume was at least 5500 kilograms per day, which is more than double the total source rate of all natural seeps of the monoaromatic petroleum hydrocarbons in the northern Gulf of Mexico. Dissolved oxygen concentrations suggest that microbial respiration rates within the plume were not appreciably more than 1 micromolar oxygen per day.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Poluição Ambiental , Hidrocarbonetos , Petróleo , Água do Mar , Poluentes da Água , Oceano Atlântico , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Poluentes da Água/metabolismo
11.
Science ; 307(5714): 1428-34, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15746419

RESUMO

The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Carbonatos , Ecossistema , Sedimentos Geológicos , Invertebrados , Água do Mar , Animais , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Biomassa , Contagem de Colônia Microbiana , Meio Ambiente , Peixes , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Temperatura Alta , Hidrogênio/análise , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/análise , Metano/análise , Metano/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA