Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962411

RESUMO

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Assuntos
Proliferação de Células , Fissura Palatina , Palato , Extratos Vegetais , Tretinoína , Humanos , Tretinoína/farmacologia , Proliferação de Células/efeitos dos fármacos , Palato/efeitos dos fármacos , Palato/embriologia , Palato/citologia , Extratos Vegetais/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , MicroRNAs/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Biomed Res ; 45(4): 143-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010190

RESUMO

Copper (Cu) is known to induce oxidative stress and apoptosis in the liver, kidney, and brain. We previously demonstrated the molecular mechanism underlying the Cu-induced hepatic diurnal variation. However, the cellular molecule(s) involved in Cu-induced renal chronotoxicity remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying Cu-induced diurnal toxicity in the kidneys. We evaluated cell viability and clock gene expression levels in mouse renal cortex tubular cells (MuRTE61 cells) after Cu treatment. We also examined the Cu homeostasis- and apoptosis-related gene levels after period 1 (Per1) overexpression in MuRTE61 cells. Cu treatment decreased MuRTE61 cell viability in a dose-dependent manner. It increased the Per1 expression levels after 24 h. Notably, Per1 overexpression alleviated the Cu-induced inhibition of MuRTE61 cell viability. Moreover, Per1 overexpression downregulated the cleaved caspase-3 and reduced Cu levels by upregulating the antioxidant 1 copper chaperone (Atox1) levels. These results suggest that Cu-induced renal toxicity is associated with Per1 expression via the regulation of the copper chaperone, Atox1.


Assuntos
Sobrevivência Celular , Cobre , Rim , Proteínas Circadianas Period , Animais , Camundongos , Cobre/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte de Cobre/metabolismo , Proteínas de Transporte de Cobre/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
3.
PLoS One ; 19(6): e0305812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913662

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy and a major cause of blindness. RP is caused by several variants of multiple genes, and genetic diagnosis by identifying these variants is important for optimizing treatment and estimating patient prognosis. Next-generation sequencing (NGS), which is currently widely used for diagnosis, is considered useful but is known to have limitations in detecting copy number variations (CNVs). In this study, we re-evaluated CNVs in EYS, the main causative gene of RP, identified via NGS using multiplex ligation-dependent probe amplification (MLPA). CNVs were identified in NGS samples of eight patients. To identify potential CNVs, MLPA was also performed on samples from 42 patients who were undiagnosed by NGS but carried one of the five major pathogenic variants reported in Japanese EYS-RP cases. All suspected CNVs based on NGS data in the eight patients were confirmed via MLPA. CNVs were found in 2 of the 42 NGS-undiagnosed RP cases. Furthermore, results showed that 121 of the 661 patients with RP had EYS as the causative gene, and 8.3% (10/121 patients with EYS-RP) had CNVs. Although NGS using the CNV calling criteria utilized in this study failed to identify CNVs in two cases, no false-positive results were detected. Collectively, these findings suggest that NGS is useful for CNV detection during clinical diagnosis of RP.


Assuntos
Variações do Número de Cópias de DNA , Proteínas do Olho , Sequenciamento de Nucleotídeos em Larga Escala , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Masculino , Proteínas do Olho/genética , Pessoa de Meia-Idade , Adulto , Reação em Cadeia da Polimerase Multiplex/métodos
4.
Sci Rep ; 14(1): 10044, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698112

RESUMO

Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca fascicularis , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/transplante , Epitélio Pigmentado da Retina/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/patologia
5.
J Toxicol Sci ; 49(4): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556351

RESUMO

Busulfan is an anticancer drug known to cause serious damage to seminiferous tubules in the testes and deplete germ cells in human and animal models. The testicular artery is anastomosed with deferential and cremasteric arteries and is divided into capsular arteries, which give rise to the centripetal arteries and then recurrent arteries. The arterial blood in the testicular tissue is supplied by such a consequent system of arterial vessels, in order from the peripheral to the central area. As anticancer drugs are generally distributed throughout the whole body via the bloodstream and the running and distribution of arteries differ among the testicular areas, we hypothesized that the efficacy of busulfan differs in different testicular areas, particularly between the central and peripheral areas. In this study, busulfan was intraperitoneally injected at 40 mg/kg body weight into C57BL/6J male mice. After 28 days, in busulfan-treated mice, the diameters of seminiferous tubules were significantly higher in the central than in the peripheral area of the testes. The seminiferous tubular areas also significantly decreased in the peripheral areas compared with the central areas. The number of germ cells per seminiferous tubule was significantly higher in the central than in the peripheral area. Sertoli cell nuclei were detached into the lumen in the peripheral area. The number of Leydig cells was significantly lower in the peripheral areas. These data suggest that the effects of busulfan differ between the central and peripheral areas of the testis at 4 weeks after busulfan administration.


Assuntos
Bussulfano , Testículo , Masculino , Animais , Humanos , Camundongos , Bussulfano/toxicidade , Espermatogênese , Camundongos Endogâmicos C57BL , Túbulos Seminíferos
6.
Sci Rep ; 14(1): 2793, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307956

RESUMO

This study aimed to investigate how the extent and central/peripheral location of the residual visual field (VF) in patients with late-stage inherited retinal diseases (IRDs) are related to retinal sensitivity detected using full-field stimulus testing (FST). We reviewed the results of Goldmann perimetry and FST from the medical records of patients with IRDs whose VF represents central (within 10°) and/or peripheral islands, or undetectable. In total, 19 patients (19 eyes) were analyzed in this study. The median value of residual VF area was 1.38%. The median values of rod and cone sensitivities were - 14.9 dB and 7.4 dB, respectively. Patients with only the peripheral island (- 33.9 dB) had better median rod sensitivity than other groups (only central, - 18.9 dB; both, - 3.6 dB). VF area significantly correlated with rod sensitivity (r = - 0.943, p = 0.005) in patients with only peripheral island, but not with cone sensitivity. Peripheral VF islands were significant contributors to FST results, especially rod sensitivity. With reduced or loss of central vision, the extent of residual peripheral VF significantly affected rod sensitivity, suggesting that FST can be useful in quantitatively estimating the overall remaining vision in patients with late-stage IRD.


Assuntos
Degeneração Retiniana , Campos Visuais , Humanos , Testes de Campo Visual/métodos , Adaptação à Escuridão , Retina
7.
J Appl Toxicol ; 44(5): 784-793, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38262615

RESUMO

Successful treatment of pediatric cancers often results in long-term health complications, including potential effects on fertility. Therefore, assessing the male reproductive toxicity of anti-cancer drug treatments and the potential for recovery is of paramount importance. However, in vivo evaluations are time-intensive and require large numbers of animals. To overcome these constraints, we utilized an innovative organ culture system that supports long-term spermatogenesis by placing the testis tissue between a base agarose gel and a polydimethylsiloxane ceiling, effectively mirroring the in vivo testicular environment. The present study aimed to determine the efficacy of this organ culture system for accurately assessing testicular toxicity induced by cisplatin, using acrosin-green fluorescent protein (GFP) transgenic neonatal mouse testes. The testis fragments were treated with different concentrations of cisplatin-containing medium for 24 h and incubated in fresh medium for up to 70 days. The changes in tissue volume and GFP fluorescence over time were evaluated to monitor the progression of spermatogenesis, in addition to the corresponding histopathology. Cisplatin treatment caused tissue volume shrinkage and reduced GFP fluorescence in a concentration-dependent manner. Recovery from testicular toxicity was also dependent on the concentration of cisplatin received. The results demonstrated that this novel in vitro system can be a faithful replacement for animal experiments to assess the testicular toxicity of anti-cancer drugs and their reversibility, providing a useful method for drug development.


Assuntos
Cisplatino , Testículo , Humanos , Camundongos , Animais , Criança , Recém-Nascido , Masculino , Testículo/metabolismo , Técnicas de Cultura de Órgãos/métodos , Cisplatino/toxicidade , Espermatogênese , Proteínas de Fluorescência Verde/genética
8.
Biochem Biophys Res Commun ; 696: 149516, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241808

RESUMO

Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.


Assuntos
Fissura Palatina , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética
9.
J Toxicol Sci ; 49(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38191190

RESUMO

Cleft palate (CP) is one of the most common birth defects and is caused by a combination of genetic and/or environmental factors. Environmental factors such as pharmaceutical exposure in pregnant women are known to induce CP. Recently, microRNA (miRNA) was found to be affected by environmental factors. The aim of the present study was to investigate the involvement of miRNA against phenytoin (PHE)-induced inhibition of proliferation in human embryonic palatal mesenchymal (HEPM) cells. We demonstrated that PHE inhibited HEPM cell proliferation in a dose-dependent manner. We found that treatment with PHE downregulated cyclin-D1 and cyclin-E expressions in HEPM cells. Furthermore, PHE increased miR-4680-3p expression and decreased two downstream genes (ERBB2 and JADE1). Importantly, an miR-4680-3p-specific inhibitor restored HEPM cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with PHE. These results suggest that PHE suppresses cell proliferation via modulation of miR-4680-3p expression.


Assuntos
MicroRNAs , Fenitoína , Gravidez , Humanos , Feminino , Fenitoína/toxicidade , MicroRNAs/genética , Proliferação de Células , Palato
10.
PLoS One ; 19(1): e0296493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166083

RESUMO

OBJECTIVE: Cystoid macular edema (CME) in retinitis pigmentosa (RP) is an important complication causing visual dysfunction. We investigated the effect of CME on photoreceptors in RP patients with previous or current CME, using an adaptive optics (AO) fundus camera. METHODS: We retrospectively observed the CME and ellipsoid zone (EZ) length (average of horizontal and vertical sections) by optical coherence tomography. The density and regularity of the arrangement of photoreceptor cells (Voronoi analysis) were examined at four points around 1.5° from superior to inferior and temporal to nasal. We also performed a multivariate analysis using CME duration, central macular thickness and transversal length of CME. RESULTS: We evaluated 18 patients with previous or current CME (18 eyes; age, 48.7 ± 15.6 years) and 24 patients without previous or current CME (24 eyes; age, 46.0 ± 14.5 years). There were no significant differences in age, logMAR visual acuity, or EZ length. In groups with and without CME, cell density was 11967 ± 3148 and 16239 ± 2935 cells/mm2, and sequence regularity was 85.5 ± 3.4% and 88.5 ± 2.8%, respectively; both parameters were significantly different. The correlation between photoreceptor density and age was more negative in group with CME. The CME group tended toward greater reductions in duration of CME. CONCLUSION: Complications of CME in RP patients may lead to a decrease in photoreceptor density and regularity. Additionally, a longer duration of CME may result in a greater reduction in photoreceptor density.


Assuntos
Edema Macular , Retinose Pigmentar , Humanos , Adulto , Pessoa de Meia-Idade , Edema Macular/complicações , Estudos Retrospectivos , Retinose Pigmentar/complicações , Retinose Pigmentar/diagnóstico por imagem , Fóvea Central , Tomografia de Coerência Óptica/métodos , Células Fotorreceptoras
11.
Cell Stem Cell ; 30(12): 1585-1596.e6, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065067

RESUMO

Transplantation of induced pluripotent stem cell (iPSC)-derived retinal organoids into retinal disease animal models has yielded promising results, and several clinical trials on iPSC-derived retinal pigment epithelial cell transplantation have confirmed its safety. In this study, we performed allogeneic iPSC-derived retinal organoid sheet transplantation in two subjects with advanced retinitis pigmentosa (jRCTa050200027). The primary endpoint was the survival and safety of the transplanted retinal organoid sheets in the first year post-transplantation. The secondary endpoints were the safety of the transplantation procedure and visual function evaluation. The grafts survived in a stable condition for 2 years, and the retinal thickness increased at the transplant site without serious adverse events in both subjects. Changes in visual function were less progressive than those of the untreated eye during the follow-up. Allogeneic iPSC-derived retinal organoid sheet transplantation is a potential therapeutic approach, and the treatment's safety and efficacy for visual function should be investigated further.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Animais , Humanos , Retina , Retinose Pigmentar/terapia , Visão Ocular , Organoides
12.
Artigo em Inglês | MEDLINE | ID: mdl-38092388

RESUMO

BACKGROUND: This study aimed to investigate diurnal variations in copper-induced hepatic toxicity and the molecular mechanisms underlying this chronotoxicity. METHODS: Male C57BL/6J mice were intraperitoneally injected with copper chloride (CuCl2) at zeitgeber time 2 (ZT2) or 14 (ZT14), twice per week for 5 or 8 weeks. Seventy-two hours after the final CuCl2 injection, the mice were euthanized, and plasma samples were collected. The livers and kidneys were collected and weighed. In vitro experiments were performed to assess cell viability and fluctuations in clock gene expression levels in Hepa1-6 cells after CuCl2 treatment. We examined copper homeostasis- and apoptosis-related genes under clock genes overexpression. RESULTS: Repeated CuCl2 administration for 8 weeks resulted in more severe toxicity at ZT14 compared to ZT2. CuCl2 administration at ZT14 elevated plasma aspartate aminotransferase, hepatic tumor necrosis factor-α, and interleukin-6 for 5 weeks, whereas the toxic effects of CuCl2 administration at ZT2 were weaker. Moreover, CuCl2 treatment inhibited Hepa1-6 cell viability in a dose-dependent manner. We observed increased expression of three clock genes (Ciart, Cry2, and Per1) after CuCl2 treatment. Among them, overexpression of Cry2 and Per1 accelerated CuCl2-induced inhibition of Hepa1-6 cell viability. Moreover, we found that the overexpression of Cry2 and Per1 regulates cleaved caspase-3 by modulating the copper transporter genes ATP7B and CTR1. CONCLUSION: These results suggest that CuCl2-induced diurnal toxicity is associated with Cry2 and Per1 expression through the regulation of copper transporter genes in mice.


Assuntos
Cobre , Fatores de Transcrição , Masculino , Camundongos , Animais , Cobre/toxicidade , Cobre/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Fígado/metabolismo , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
13.
J Toxicol Sci ; 48(7): 411-420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394654

RESUMO

Multi-walled carbon nanotubes (MWCNTs), a kind of nanomaterial, are widely used in battery electrodes and composite materials, but the adverse effects associated with their accumulation in the living body have not been sufficiently investigated. MWCNTs are a fibrous material with molecules similar to asbestos fibers, and there are concerns about its effects on the respiratory system. In this study, we conducted a risk assessment by exposing mice using a previously developed nanomaterial inhalation exposure method. We quantified the exposure in the lungs by a lung burden test, evaluated the deterioration due to pneumonia using respiratory syncytial virus (RSV) infection, and measured inflammatory cytokines in bronchoalveolar lavage fluid (BALF). As a result, in the lung burden test, the amount of MWCNT in the lung increased according to the inhalation dose. In the RSV infection experiment, CCL3, CCL5, and TGF-ß, which are indicators of inflammation and lung fibrosis, were elevated in the MWCNT-exposed group. Histological examination revealed cells phagocytosing MWCNT fibers. These phagocytic cells were also seen during the recovery period from RSV infection. The present study found that MWCNT remained in the lungs for about a month or more, suggesting that the fibers may continue to exert immunological effects on the respiratory system. Furthermore, the inhalation exposure method enabled the exposure of nanomaterials to the entire lung lobe, allowing a more detailed evaluation of the effects on the respiratory system.


Assuntos
Nanotubos de Carbono , Pneumonia , Fibrose Pulmonar , Infecções por Vírus Respiratório Sincicial , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Pulmão/patologia , Pneumonia/patologia , Líquido da Lavagem Broncoalveolar , Vírus Sinciciais Respiratórios , Exposição por Inalação/efeitos adversos , Camundongos Endogâmicos C57BL
14.
Acta Histochem ; 125(5): 152046, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224719

RESUMO

The close interaction between male germ cells and Sertoli cells, a type of somatic cell found in the seminiferous tubules of mammalian testis, is essential for the normal progression of spermatogenesis in mammals. Vimentin is an intermediate filament protein that primarily provides mechanical support, preserves cell shape, and maintains the nuclear position, and it is often used as a marker to identify Sertoli cells. Vimentin is known to be involved in many diseases and aging processes; however, how vimentin is related to spermatogenic dysfunction and the associated functional changes is still unclear. In a previous study, we reported that vitamin E deficiency affected the testes, epididymis, and spermatozoa of mice, accelerating the progression of senescence. In this study, we focused on the Sertoli cell marker vimentin and explored the relationship between the cytoskeletal system of Sertoli cells and spermatogenic dysfunction using testis tissue sections that caused male reproductive dysfunction with vitamin E deficiency. The immunohistochemical analysis showed that the proportion of the vimentin-positive area in seminiferous tubule cross-sections was significantly increased in testis tissue sections of the vitamin E-deficient group compared with the proportion in the control group. The histological analysis of testis tissue sections from the vitamin E-deficient group showed that vimentin-positive Sertoli cells were greatly extended from the basement membrane, along with an increased abundance of vimentin. These findings suggest that vimentin may be a potential indicator for detecting spermatogenic dysfunction.


Assuntos
Filamentos Intermediários , Células de Sertoli , Animais , Masculino , Camundongos , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Mamíferos/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Vimentina/metabolismo
15.
Biol Pharm Bull ; 46(6): 824-829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258148

RESUMO

Circadian rhythms are endogenous oscillators that regulate 24 h behavioral and physiological processes. Our previous investigation demonstrated that bromobenzene metabolite (4-bromocatechol: 4-BrCA) exhibited chronotoxicity (i.e., the nephrotoxicity induced by 4-BrCA was observed during the dark phase, while not observed at light phase in mice). However, the molecular mechanism is still unknown. The aim of the present study is to investigate the cellular molecule(s) involved in the 4-BrCA-induced nephrotoxicity using mouse renal cortex tubular cell lines (MuRTE61 cells). We found that 4-BrCA showed dose dependent (0.01-1 mM) cell proliferation defect in MuRTE61 cells. By treating with 0.03 mM 4-BrCA, we demonstrated that major clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) were significantly downregulated. Interestingly, the expression levels of two genes, Bmal1 and Clock, continued to decrease after 3 h of treatment with 4-BrCA, while Cry1, Per1, and Per2 were unchanged until 24 h of treatment. Moreover, BMAL1 and CLOCK levels are higher at light phase. We speculated that BMAL1 and CLOCK might function defensively against 4-BrCA-induced nephrotoxicity since the expression levels of Bmal1 and Clock were rapidly decreased. Finally, overexpression of Bmal1 and Clock restored 4-BrCA-induced cell proliferation defect in MuRTE61 cells. Taken together, our results suggest that Bmal1 and Clock have protective roles against 4-BrCA-induced nephrotoxicity.


Assuntos
Fatores de Transcrição ARNTL , Bromobenzenos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica
16.
Biomed Res ; 44(2): 73-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005285

RESUMO

A cleft lip, with or without a cleft palate, is a common birth defect caused by environmental factors or genetic mutations. Environmental factors, such as pharmaceutical exposure in pregnant women, are known to induce cleft lip, with or without cleft palate in the child. This study aimed to investigate the protective effect of Sasa veitchii extract (SE) on phenytoin-induced inhibition of cell proliferation in human lip mesenchymal cells (KD cells) and human embryonic palatal mesenchymal cells (HEPM cells). We demonstrated that cell proliferation was inhibited by phenytoin in a dose-dependent manner in both KD and HEPM cells. Co-treatment with SE restored phenytoin-induced toxicity in KD cells but did not protect HEPM cells against phenytoin-induced toxicity. Several microRNAs (miR-27b, miR-133b, miR-205, miR-497-5p, and miR-655-3p) is reported to associate with cell proliferation in KD cells. We measured the seven kinds of microRNAs (miR27b-3p, miR-27b-5p, miR-133b, miR-205-3p, miR-205-5p, miR-497-5p, and miR-655-3p) and found that SE suppressed miR-27b-5p induced by phenytoin in KD cells. Furthermore, co-treatment with SE enhanced the expression of miR-27b-5p downstream genes (PAX9, RARA, and SUMO1). These results suggest that SE protects phenytoin-induced cell proliferation inhibition by modulating miR-27b-5p.


Assuntos
Fenda Labial , Fissura Palatina , MicroRNAs , Sasa , Gravidez , Criança , Humanos , Feminino , Fenitoína/farmacologia , Sasa/genética , Sasa/metabolismo , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Fenda Labial/genética , MicroRNAs/genética , Proliferação de Células/genética
17.
Invest Ophthalmol Vis Sci ; 64(3): 4, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862119

RESUMO

Purpose: Axon transport of organelles and neurotrophic factors is necessary for maintaining cellular function and survival of retinal ganglion cells (RGCs). However, it is not clear how trafficking of mitochondria, essential for RGC growth and maturation, changes during RGC development. The purpose of this study was to understand the dynamics and regulation of mitochondrial transport during RGC maturation using acutely purified RGCs as a model system. Methods: Primary RGCs were immunopanned from rats of either sex during three stages of development. MitoTracker dye and live-cell imaging were used to quantify mitochondrial motility. Analysis of single-cell RNA sequencing was used to identify Kinesin family member 5A (Kif5a) as a relevant motor candidate for mitochondrial transport. Kif5a expression was manipulated with either short hairpin RNA (shRNA) or exogenous expression adeno-associated virus viral vectors. Results: Anterograde and retrograde mitochondrial trafficking and motility decreased through RGC development. Similarly, the expression of Kif5a, a motor protein that transports mitochondria, also decreased during development. Kif5a knockdown decreased anterograde mitochondrial transport, while Kif5a expression increased general mitochondrial motility and anterograde mitochondrial transport. Conclusions: Our results suggested that Kif5a directly regulates mitochondrial axonal transport in developing RGCs. Future work exploring the role of Kif5a in vivo in RGCs is indicated.


Assuntos
Mitocôndrias , Células Ganglionares da Retina , Animais , Ratos , Transporte Axonal , Cinesinas/genética , Modelos Biológicos , RNA Interferente Pequeno/genética
18.
J Toxicol Sci ; 48(2): 57-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36725021

RESUMO

In non-clinical animal studies for drug discovery, histopathological evaluation is the most powerful tool to assess testicular toxicity. However, histological analysis is extremely invasive; many experimental animals are needed to evaluate changes in the pathology and anatomy of the testes over time. As an alternative, small animal magnetic resonance imaging (MRI) offers a non-invasive methodology to examine testicular toxicity without radiation. The present study demonstrated the suitability of a new, ready-to-use compact MRI platform using a high-field permanent magnet to assist with the evaluation of testicular toxicity. To validate the utility of the MRI platform, male mice were treated with busulfan (40 mg/kg, intraperitoneal injection). Twenty-eight days after treatment, both testes in busulfan-treated and control mice (n = 6/group) were non-invasively scanned in situ by MRI at 1 tesla. On a T1-weighted 3D gradient-echo MRI sequences (voxel size: 0.23 × 0.23 × 0.50 mm), the total testicular volume in busulfan-treated mice was significantly smaller than in controls. On T1-weighted images, the signal intensity of the testes was significantly higher in busulfan-treated mice than in controls. The mice were sacrificed, and the testes were isolated for histopathological analysis. The weight of the testes in busulfan-treated mice significantly decreased, similar to the results of the non-invasive analysis. Additionally, periodic acid-Schiff stain-positive effusions were observed in the interstitium of the busulfan-treated mouse testes, potentially explaining T1 shortening due to a high concentration of glycoproteinaceous content. The present data demonstrated a rapid evaluation of testicular toxicity in vivo by compact MRI.


Assuntos
Espermatogênese , Testículo , Masculino , Camundongos , Animais , Testículo/diagnóstico por imagem , Bussulfano/toxicidade , Injeções Intraperitoneais , Imageamento por Ressonância Magnética
19.
Jpn J Ophthalmol ; 67(2): 138-148, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648560

RESUMO

PURPOSE: To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN: Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS: The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION: Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.


Assuntos
Degeneração Macular , Retinose Pigmentar , Humanos , Rodopsina/genética , Estudos Transversais , População do Leste Asiático , Tomografia de Coerência Óptica/métodos , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Fenótipo , Genótipo
20.
Sci Rep ; 12(1): 19402, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371473

RESUMO

Cortisol and corticosterone (CORT) are steroid, antistress hormones and one of the glucocorticoids in humans and animals, respectively. This study evaluated the effects of CORT administration on the male reproductive system in early life stages. CORT was subcutaneously injected at 0.36 (low-), 3.6 (middle-), and 36 (high-dosed) mg/kg body weight from postnatal day (PND) 1 to 10 in ICR mice. We observed a dose-dependent increase in serum CORT levels on PND 10, and serum testosterone levels were significantly increased only in high-dosed-CORT mice. Triiodothyronine levels were significantly higher in the low-dosed mice but lower in the middle- and high-dosed mice. However, testicular weights did not change significantly among the mice. Sertoli cell numbers were significantly reduced in low- and middle-dosed mice, whereas p27-positive Sertoli cell numbers increased in low- and middle-dosed mice. On PND 16, significant increases in testicular and relative testicular weights were observed in all-dosed-CORT mice. On PND 70, a significant decrease in testicular weight, Sertoli cell number, and spermatozoa count was observed. These results revealed that increased serum CORT levels in early life stages could induce p27 expression in Sertoli cells and terminate Sertoli cell proliferation, leading to decreased Sertoli cell number in mouse testes.


Assuntos
Células de Sertoli , Testículo , Humanos , Camundongos , Masculino , Animais , Células de Sertoli/metabolismo , Corticosterona/metabolismo , Camundongos Endogâmicos ICR , Contagem de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA