RESUMO
SrTiO3 (STO) substrate, a perovskite oxide material known for its high dielectric constant (É), facilitates the observation of various (high-temperature) quantum phenomena. A quantum Hall topological insulating (QHTI) state, comprising two copies of QH states with antiparallel two ferromagnetic edge-spin overlap protected by the U(1) axial rotation symmetry of spin polarization, has recently been achieved in low magnetic field (B) even as high as ≈100 K in a monolayer graphene/thin hexagonal boron nitride (hBN) spacer placed on an STO substrate, thanks to the high É of STO. Despite the use of the heavy STO substrate, however, proximity-induced quantum spin Hall (QSH) states in 2D TI phases, featuring a topologically protected helical edge spin phase within time-reversal-symmetry, is not confirmed. Here, with the use of a monolayer hBN spacer, it is revealed the coexistence of QSH (at B = 0T) and QHTI (at B ≠ 0) states in the same single graphene sample placed on an STO, with a crossover regime between the two at low B. It is also classified that the different symmetries of the two nontrivial helical edge spin phases in the two states lead to different interaction with electron-puddle quantum dots, caused by a local surface pocket of the STO, in the crossover regime, resulting in a spin dephasing only for the QHTI state. The results obtained using STO substrates open the doors to investigations of novel QH spin states with different symmetries and their correlations with quantum phenomena. This exploration holds value for potential applications in spintronic devices.
RESUMO
The concept of Berry curvature is essential for various transport phenomena. However, an effect of the Berry curvature on magnetochiral anisotropy, i.e., nonreciprocal magnetotransport, is still elusive. Here, we report that the Berry curvature induces the large magnetochiral anisotropy. In Weyl semimetal WTe_{2}, we observe the strong enhancement of the magnetochiral anisotropy when the Fermi level is located near the Weyl points. Notably, the maximal figure of merit γ[over ¯] reaches 1.2×10^{-6} m^{2} T^{-1} A^{-1}, which is the largest ever reported in bulk materials. Our semiclassical calculation shows that the diverging Berry curvature at the Weyl points strongly enhances the magnetochiral anisotropy.
RESUMO
Skyrmions, topologically stable spin structures with particle-like properties, are promising for spintronics applications such as skyrmion racetrack memory. Though reliable control of skyrmion motion is essential for the operation of spintronics devices, the straight motion of skyrmions along the driving force is in general difficult due to an inevitable transverse force originating from their topology. Here, we propose a method of precise manipulation of skyrmions based on surface acoustic waves (SAWs) propagating in two dimensions. Using two standing SAWs, saddle-shape local potentials like quadrupole ion traps are created to trap skyrmions robustly. Furthermore, by tuning the frequencies of the SAWs, we show that trapped skyrmions not only move in straight lines but also move precisely in any direction in a two-dimensional thin film. These results could be helpful for the future design of spintronics devices based on skyrmions.
RESUMO
Nonlinear phenomena in physical systems can be used for brain-inspired computing with low energy consumption. Response from the dynamics of a topological spin structure called skyrmion is one of the candidates for such a neuromorphic computing. However, its ability has not been well explored experimentally. Here, we experimentally demonstrate neuromorphic computing using nonlinear response originating from magnetic field-induced dynamics of skyrmions. We designed a simple-structured skyrmion-based neuromorphic device and succeeded in handwritten digit recognition with the accuracy as large as 94.7% and waveform recognition. Notably, there exists a positive correlation between the recognition accuracy and the number of skyrmions in the devices. The large degrees of freedom of skyrmion systems, such as the position and the size, originate from the more complex nonlinear mapping, the larger output dimension, and, thus, high accuracy. Our results provide a guideline for developing energy-saving and high-performance skyrmion neuromorphic computing devices.
RESUMO
Peltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using [Formula: see text] samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.
RESUMO
Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
RESUMO
An inductor, one of the most fundamental circuit elements in modern electronic devices, generates a voltage proportional to the time derivative of the input current1. Conventional inductors typically consist of a helical coil and induce a voltage as a counteraction to time-varying magnetic flux penetrating the coil, following Faraday's law of electromagnetic induction. The magnitude of this conventional inductance is proportional to the volume of the inductor's coil, which hinders the miniaturization of inductors2. Here, we demonstrate an inductance of quantum-mechanical origin3, generated by the emergent electric field induced by current-driven dynamics of spin helices in a magnet. In microscale rectangular magnetic devices with nanoscale spin helices, we observe a typical inductance as large as -400 nanohenry, comparable in magnitude to that of a commercial inductor, but in a volume about a million times smaller. The observed inductance is enhanced by nonlinearity in current and shows non-monotonous frequency dependence, both of which result from the current-driven dynamics of the spin-helix structures. The magnitude of the inductance rapidly increases with decreasing device cross-section, in contrast to conventional inductors. Our findings may pave the way to microscale, simple-shaped inductors based on emergent electromagnetism related to the quantum-mechanical Berry phase.
RESUMO
Non-collinear and non-coplanar spin textures, such as chiral domain walls1 and helical or triangular spin structures2,3, bring about diverse functionalities. Among them, magnetic skyrmions, particle-like non-coplanar topological spin structures characterized by a non-zero integer topological charge called the skyrmion number (Nsk), have great potential for various spintronic applications, such as energy-saving, non-volatile memory and non-von Neumann devices4-7. Current pulses can initiate skyrmion creation in thin-film samples8-10 but require relatively large current densities, which probably causes Joule heating. Moreover, skyrmion creation is localized at a specific position in the film depending on the sample design. Here, we experimentally demonstrate an approach to skyrmion creation employing surface acoustic waves (SAWs); in asymmetric multilayers of Pt/Co/Ir, propagating SAWs induce skyrmions in a wide area of the magnetic film. Micromagnetic simulations reveal that inhomogeneous torque arising from both SAWs and thermal fluctuations creates magnetic textures, with pair structures consisting of a Néel skyrmion-like and an antiskyrmion-like structure. Subsequently, such pairs transform to a Néel skyrmion due to the instability of the antiskyrmion-like structure in a system with interfacial Dzyaloshinskii-Moriya interaction. Our findings provide a tool for efficient manipulation of topological spin objects without heat dissipation and over large areas, given that the propagation length of SAWs is of the order of millimetres.
RESUMO
Dynamics of string-like objects is an important issue in a broad range of physical systems, including vortex lines in superconductors, viscoelastic polymers, and superstrings in elementary particle physics. In noncentrosymmetric magnets, string forms of magnetic skyrmions are present as topological spin objects, and their current-induced dynamics has recently attracted intense interest. We show in the chiral magnet MnSi that the current-induced deformation dynamics of skyrmion strings results in transport response associated with the real-space Berry phase. Prominent nonlinear Hall signals emerge above the threshold current only in the skyrmion phase. We clarify the mechanism for these nonlinear Hall signals by adopting spin density wave picture to describe the moving skyrmion lattice; deformation of skyrmion strings occurs in an asymmetric manner due to the Dzyaloshinskii-Moriya interaction, which leads to the nonreciprocal nonlinear Hall response originating from an emergent electromagnetic field. This finding reveals the dynamical nature of string-like objects and consequent transport outcomes in noncentrosymmetric systems.