Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19585, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949963

RESUMO

Homology is a mathematical tool to quantify "the contact degree", which can be expressed in terms of Betti numbers. The Betti numbers used in this study consisted of two numbers, b0 (a zero-dimensional Betti number) and b1 (a one-dimensional Betti number). We developed a chromatin homology profile (CHP) method to quantify the chromatin contact degree based on this mathematical tool. Using the CHP method we analyzed the number of holes (surrounded areas = b1 value) formed by the chromatin contact and calculated the maximum value of b1 (b1MAX), the value of b1 exceeding 5 for the first time or Homology Value (HV), and the chromatin density (b1MAX/ns2). We attempted to detect differences in chromatin patterns and differentiate histological types of lung cancer from respiratory cytology using these three features. The HV of cancer cells was significantly lower than that of non-cancerous cells. Furthermore, b1MAX and b1MAX/ns2 showed significant differences between small cell and non-small cell carcinomas and between adenocarcinomas and squamous cell carcinomas, respectively. We quantitatively analyzed the chromatin patterns using homology and showed that the CHP method may be a useful tool for differentiating histological types of lung cancer in respiratory cytology.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Cromatina , Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia
2.
PLoS One ; 18(7): e0283490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437070

RESUMO

Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.


Assuntos
Histonas , Membrana Nuclear , Histona Metiltransferases , Lisina , Complexo de Golgi , Cromatina , Centrossomo
3.
Ann Gastroenterol Surg ; 7(3): 458-470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152770

RESUMO

Background: Studies have shown that cancer stemness and the endoplasmic reticulum (ER) stress response are inversely regulated in colorectal cancer (CRC), but the mechanism has not been fully clarified. Long noncoding RNAs (lncRNAs) play key roles in cancer progression and metastasis. In this study we investigated lncRNA 01534 (LINC01534) as a possible modulator between cancer stemness and ER stress response. Methods: In vitro experiments using CRC cell lines were performed to explore a possible role of LINC01534. The expression of LINC01534 in clinical CRC samples was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization. Results: Silencing LINC01534 led to suppression of cell proliferation, invasiveness, and cell cycle progression at the G2-M phase, and promoted apoptosis. Moreover, we found that silencing LINC01534 suppressed cancer stemness, while it activated the ER stress response, especially through the PERK/eIF2α signaling pathway. In situ hybridization revealed LINC01534 was expressed in tumor cells and upregulated in CRC tissues compared with normal epithelium. A survival survey indicated that high LINC01534 expression was significantly associated with shorter overall survival in 187 CRC patients. Conclusion: This is the first report on LINC01534 in human cancer. Our findings suggest that LINC01534 may be an important modulator of the maintenance of cancer stemness and suppression of the ER stress response, and that it could be a novel prognostic factor in CRC.

4.
iScience ; 26(4): 106478, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091240

RESUMO

Somatic cell reprogramming using the microRNAs miR-200c, miR-302s, and miR-369s leads to increased expression of cyclin-dependent kinase inhibitors in human colorectal cancer (CRC) cells and suppressed tumor growth. Here, we investigated whether these microRNAs inhibit colorectal tumorigenesis in CPC;Apc mice, which are prone to colon and rectal polyps. Repeated administration of microRNAs inhibited polyp formation. Microarray analysis indicated that c-MAF, which reportedly shows oncogene-like behavior in multiple myeloma and T cell lymphoma, decreased in tumor samples but increased in microRNA-treated normal mucosa. Immunohistochemistry identified downregulation of c-MAF as an early tumorigenesis event in CRC, with low c-MAF expression associated with poor prognosis. Of note, c-MAF expression and p53 protein levels were inversely correlated in CRC samples. c-MAF knockout led to enhanced tumor formation in azoxymethane/dextran sodium sulfate-treated mice, with activation of cancer-promoting genes. c-MAF may play a tumor-suppressive role in CRC development.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111375

RESUMO

The incidence of inflammatory bowel disease (IBD) is increasing worldwide. It is reported that TGF-ß/Smad signal pathway is inactivated in patients with Crohn's disease by overexpression of Smad 7. With expectation of multiple molecular targeting by microRNAs (miRNAs), we currently attempted to identify certain miRNAs that activate TGF-ß/Smad signal pathway and aimed to prove in vivo therapeutic efficacy in mouse model. Through Smad binding element (SBE) reporter assays, we focused on miR-497a-5p. This miRNA is common between mouse and human species and enhanced the activity of TGF-ß/Smad signal pathway, decreased Smad 7 and/or increased phosphorylated Smad 3 expression in non-tumor cell line HEK293, colorectal cancer cell line HCT116 and mouse macrophage J774a.1 cells. MiR-497a-5p also suppressed the production of inflammatory cytokines TNF-α, IL-12p40, a subunit of IL-23, and IL-6 when J774a.1 cells were stimulated by lipopolysaccharides (LPS). In a long-term therapeutic model for mouse dextran sodium sulfate (DSS)-induced colitis, systemic delivery of miR-497a-5p load on super carbonate apatite (sCA) nanoparticle as a vehicle restored epithelial structure of the colonic mucosa and suppressed bowel inflammation compared with negative control miRNA treatment. Our data suggest that sCA-miR-497a-5p may potentially have a therapeutic ability against IBD although further investigation is essential.

6.
Life (Basel) ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983771

RESUMO

High expression of low-density lipoprotein receptor-related protein 6 (LRP6), a key component of the Wnt/ß-catenin signaling pathway, is reported to be associated with malignant potential in some solid tumors including breast cancer and hepatocellular carcinoma. Few reports, however, have examined its function and clinical significance in colorectal cancers (CRC) demonstrating constitutive activation of Wnt signaling. Here, we compared the expression level and function of LRP6 in CRC with that of esophageal squamous cell carcinoma (ESCC) bearing few Wnt/ß-catenin pathway mutations. On immunohistochemical staining, high LRP6 expression was noted in three of 68 cases (4.4%), and high ß-catenin in 38 of 67 cases (56.7%) of CRC. High LRP6 expression was found in 21 of 82 cases (25.6%), and high ß-catenin expression in 29 of 73 cases (39.7%) of ESCC. In our in vitro studies, LRP6 knockdown hardly changed Wnt signaling activity in CRC cell lines with mutations in Wnt signaling downstream genes. In contrast, in ESCC cell lines without Wnt signaling-related mutations, LRP6 knockdown significantly decreased Wnt signaling activity. LRP6 function may depend on constitutive activation of Wnt signaling.

7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835361

RESUMO

Here we aimed to establish a simple detection method for detecting circulating tumor cells (CTCs) in the blood sample of colorectal cancer (CRC) patients using poly(2-methoxyethyl acrylate) (PMEA)-coated plates. Adhesion test and spike test using CRC cell lines assured efficacy of PMEA coating. A total of 41 patients with pathological stage II-IV CRC were enrolled between January 2018 and September 2022. Blood samples were concentrated by centrifugation by the OncoQuick tube, and then incubated overnight on PMEA-coated chamber slides. The next day, cell culture and immunocytochemistry with anti-EpCAM antibody were performed. Adhesion tests revealed good attachment of CRCs to PMEA-coated plates. Spike tests indicated that ~75% of CRCs from a 10-mL blood sample were recovered on the slides. By cytological examination, CTCs were identified in 18/41 CRC cases (43.9%). In cell cultures, spheroid-like structures or tumor-cell clusters were found in 18/33 tested cases (54.5%). Overall, CTCs and/or growing circulating tumor cells were found in 23/41 CRC cases (56.0%). History of chemotherapy or radiation was significantly negatively correlated with CTC detection (p = 0.02). In summary, we successfully captured CTCs from CRC patients using the unique biomaterial PMEA. Cultured tumor cells will provide important and timely information regarding the molecular basis of CTCs.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Acrilatos/química , Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/patologia , Polímeros/química , Células Tumorais Cultivadas , Técnicas de Cultura de Células
8.
J Radiat Res ; 64(2): 284-293, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36610719

RESUMO

Pancreatic cancer is one of the most aggressive cancers and the seventh leading cause of cancer-associated death in the world. Radiation is performed as an adjuvant therapy as well as anti-cancer drugs. Because cancer stem-like cells (CSCs) are considered to be radioresistant and cause recurrence and metastasis, understanding their properties is required for the development of novel therapeutic strategies. To investigate the CSC properties of pancreatic cancer cells, we used a pancreatic CSC model, degron (++) cells, which have low proteasome activity. Degron (++) cells displayed radioresistance in comparison with control cells. Using Ribonucleic acid (RNA) sequencing, we successfully identified KRT13 as a candidate gene responsible for radioresistance. Knockdown of KRT13 sensitized the degron (++) cells to radiation. Furthermore, a database search revealed that KRT13 is upregulated in pancreatic cancer cell lines and that high expression of KRT13 is associated with poorer prognosis. These results indicate that a combination therapy of KRT13 knockdown and radiation could hold therapeutic promise in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Tolerância a Radiação , Humanos , Tolerância a Radiação/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/metabolismo , Pâncreas , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Queratina-13/metabolismo , Neoplasias Pancreáticas
9.
Biomedicines ; 11(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672711

RESUMO

This study aimed to analyze circulating tumor cells (CTCs) from patients with colorectal cancer (CRC). We designed a dielectrophoresis-based micropore system and tested its cell capture with HT29 colon cancer cells. Then, blood samples were drawn from 24 patients with stages II-IV CRC. Mononuclear cells were isolated and loaded into the micropore system. Single cells were positioned into small pores with dielectrophoresis. After labeling the cells with the appropriate antibodies, tumor-like cells were collected with an automated micromanipulator. We collected 43 CTCs from 15 out of 24 patient samples. The presence of CTC was significantly associated with ling metastasis. We performed whole genome amplification, followed by PCR and Sanger sequencing, to examine the point mutations in the KRAS, BRAF, and PIK3CA genes. This mutation analysis was successfully performed in 35 cells. Among the 14 cytokeratin (CK)-positive cells, we found PIK3CA mutations in three cells (21%) from two patients. Among the 21 CK-negative cells, we found a KRAS mutation in one cell (5%) from one patient and a PIK3CA mutation in one cell (5%) from one patient. It is noteworthy that these mutations were not detected in the corresponding primary tumors. In conclusion, dielectrophoresis-based capture in a micropore system was useful for detecting both CK-positive and CK-negative CTCs. This simple method could be applied to various tumor types.

10.
Int J Oncol ; 60(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981812

RESUMO

miR­1291 exerts an anti­tumor effect in a subset of human carcinomas, including pancreatic cancer. However, its role in colorectal cancer (CRC) is largely unknown. In the present study, the expression and effect of miR­1291 in CRC cells was investigated. It was identified that miR­1291 significantly suppressed the proliferation, invasion, cell mobility and colony formation of CRC cells. Additionally, miR­1291 induced cell apoptosis. A luciferase reporter assay revealed that miR­1291 directly bound the 3'­untranslated region sequence of doublecortin­like kinase 1 (DCLK1). miR­1291 also suppressed DCLK1 mRNA and protein expression in HCT116 cells that expressed DCLK1. Furthermore, miR­1291 suppressed cancer stem cell markers BMI1 and CD133, and inhibited sphere formation. The inhibitory effects on sphere formation, invasion and mobility in HCT116 cells were also explored and verified using DCLK1 siRNAs. Furthermore, miR­1291 induced CDK inhibitors p21WAF1/CIP1 and p27KIP1 in three CRC cell lines, and the overexpression of DCLK1 in HCT116 cells led to a decrease of p21WAF1/CIP1 and p27KIP1. Intravenous administration of miR­1291 loaded on the super carbonate apatite delivery system significantly inhibited tumor growth in the DLD­1 xenograft mouse model. Additionally, the resultant tumors exhibited significant upregulation of the p21WAF1/CIP1 and p27KIP1 protein with treatment of miR­1291. Taken together, the results indicated that miR­1291 served an anti­tumor effect by modulating multiple functions, including cancer stemness and cell cycle regulation. The current data suggested that miR­1291 may be a promising nucleic acid medicine against CRC.


Assuntos
Linhagem Celular/metabolismo , Neoplasias do Colo/tratamento farmacológico , MicroRNAs/farmacologia , Linhagem Celular/imunologia , Neoplasias do Colo/fisiopatologia , Quinases Semelhantes a Duplacortina/efeitos dos fármacos , Quinases Semelhantes a Duplacortina/metabolismo , Humanos , MicroRNAs/administração & dosagem
11.
Br J Cancer ; 126(1): 109-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34707247

RESUMO

BACKGROUND: KLF5 plays a crucial role in stem cells of colorectum in cooperation with Lgr5 gene. In this study, we aimed to explicate a regulatory mechanism of the KLF5 gene product from a view of three-dimensional genome structure in colorectal cancer (CRC). METHODS: In vitro engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)-seq method was used to identify the regions that bind to the KLF5 promoter. RESULTS: We revealed that the KLF5 promoter region interacted with the KLF5 enhancer region as well as the transcription start site (TSS) region of the Colon Cancer Associated Transcript 1 (CCAT1) gene. Notably, the heterodeletion mutants of KLF5 enhancer impaired the cancer stem-like properties of CRC cells. The KLF5 protein participated in the core-regulatory circuitry together with co-factors (BRD4, MED1, and RAD21), which constructs the three-dimensional genome structures consisting of KLF5 promoter, enhancer and CCAT1 TSS region. In vitro analysis indicated that KLF5 regulated CCAT1 expression and we found that CCAT1 expression was highly correlated with KLF5 expression in CRC clinical samples. CONCLUSIONS: Our data propose the mechanistic insight that the KLF5 protein constructs the core-regulatory circuitry with co-factors in the three-dimensional genome structure and coordinately regulates KLF5 and CCAT1 expression in CRC.


Assuntos
Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Células-Tronco/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Taxa de Sobrevida
12.
J Pers Med ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834512

RESUMO

In the past few years, we have demonstrated the efficacy of a nanoparticle system, super carbonate apatite (sCA), for the in vivo delivery of siRNA/miRNA. Intravenous injection of sCA loaded with small RNAs results in safe, high tumor delivery in mouse models. To further improve the efficiency of tumor delivery and avoid liver toxicity, we successfully developed an inorganic nanoparticle device (iNaD) via high-frequency ultrasonic pulverization combined with PEG blending during the production of sCA. Compared to sCA loaded with 24 µg of miRNA, systemic administration of iNaD loaded with 0.75 µg of miRNA demonstrated similar delivery efficiency to mouse tumors with little accumulation in the liver. In the mouse therapeutic model, iNaD loaded with 3 µg of the tumor suppressor small RNA MIRTX resulted in an improved anti-tumor effect compared to sCA loaded with 24 µg. Our findings on the bio-distribution and therapeutic effect of iNaD provide new perspectives for future nanomedicine engineering.

13.
Jpn Dent Sci Rev ; 57: 174-181, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34630775

RESUMO

Wound healing in the oral and maxillofacial region is a complicated and interactive process. Severe mucosal or skeletal muscle injury by trauma or surgery induces worse healing conditions, including delayed wound closure and repair with excessive scar tissue. These complications lead to persistent functional impairment, such as digestive behavior or suppression of maxillofacial growth in infancy. Osteopontin (OPN), expressed in a variety of cells, is multifunctional and comprises a number of functional domains. Seven amino acids sequence, SVVYGLR (SV peptide), exposed by thrombin cleavage of OPN, has angiogenic activity and promotes fibroblast differentiation into myofibroblasts and increased expression of collagen type III. Additionally, synthetic SV peptide shows faster dermal and oral mucosal wound closure by facilitating cell motility and migratory activities in dermal- or mucosal-derived keratinocytes and fibroblasts. Moreover, cell motility and differentiation in myogenic cell populations are accelerated by SV peptide, which contributes to the facilitation of matured myofibers and scarless healing and favorable functional regeneration after skeletal muscle injury. SV peptide has high affinity with TGF-ß, with potential involvement of the TGF-ß/Smad signaling pathway. Clinical application of single-dose SV peptide could be a powerful alternative treatment option for excessive oral and maxillofacial wound care to prevent disadvantageous events.

14.
J Radiat Res ; 62(5): 764-772, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34124754

RESUMO

Radiation therapy is generally effective for treating breast cancers. However, approximately 30% of patients with breast cancer experience occasional post-treatment local and distant metastasis. Low-dose (0.5 Gy) irradiation is a risk factor that promotes the invasiveness of breast cancers. Although an inhibitor of checkpoint kinase 1 (Chk1) suppresses the growth and motility of breast cancer cell lines, no study has investigated the effects of the combined use of a Chk1 inhibitor and radiation on cancer metastasis. Here, we addressed this question by treating the human breast cancer cell line MDA-MB-231 (in vitro) and mouse mammary tumor cell line 4 T1 (in vitro and in vivo) with γ-irradiation and the Chk1 inhibitor PD407824. Low-dose γ-irradiation promoted invasiveness, which was suppressed by PD407824. Comprehensive gene expression analysis revealed that low-dose γ-irradiation upregulated the mRNA and protein levels of S100A4, the both of which were downregulated by PD407824. We conclude that PD407824 suppresses the expression of S100A4. As the result, γ-irradiation-induced cell invasiveness were inhibited.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Carbazóis/uso terapêutico , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , Proteínas de Neoplasias/antagonistas & inibidores , Animais , Neoplasias da Mama/patologia , Carbazóis/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/fisiologia , Relação Dose-Resposta à Radiação , Feminino , Raios gama/efeitos adversos , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Proteína A4 de Ligação a Cálcio da Família S100/biossíntese , Proteína A4 de Ligação a Cálcio da Família S100/genética , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação
15.
Dent Mater J ; 40(4): 957-963, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33716279

RESUMO

In the present study, we investigated the possible involvement of the TGF-ß/Smad signaling pathway in the osteopontin-derived SVVYGLR (SV) peptide-mediated migratory activities of myogenic cells and evaluated the facilitative effects of the SV peptide on the differentiation of myogenic cells in vitro. The SV peptide-induced migration in both human-derived satellite cells and myoblasts was substantially suppressed by the TGF-ß1 receptor inhibitor SB431542 or SB505124. Besides, the expression level of the Smad3 phosphorylation was further enhanced by the addition of the SV peptide in comparison with control groups. Furthermore, an increase in the expression of myogenin-positive nuclei and a higher number of nascent myotubes with myosin heavy chain expression was confirmed in cultured myoblasts supplemented with the SV peptide. These results suggest that the involvement of the TGF-ß/Smad signaling pathway in the SV peptide-mediated migration and the facilitative effect of the SV peptide on the differentiation of myogenic cells into myotubes.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta1 , Diferenciação Celular , Movimento Celular , Humanos , Oligopeptídeos
16.
Dent Mater J ; 40(3): 766-771, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-33563848

RESUMO

The present study was designed to evaluate the effects of the osteopontin-derived multifunctional short peptide, SVVYGLR (SV) peptide on the biological properties of skeletal muscle-specific myogenic cells. We employed human-derived satellite cells (HSkMSC) and skeletal muscle myoblasts (HSMM) and performed a series of biochemical experiments. The synthetic SV peptide showed no influence on the proliferation and adhesion properties of HSkMSC and HSMM, while it showed a significant increase in cell motility, including migration activities upon treatment with the SV peptide. In a rat model with volumetric loss of masticatory muscle, immunohistochemical staining of regenerating muscle tissue immediately after injury demonstrated an increase of the number of both MyoD- and myogenin-positive cells in SV peptide-treated group. These results suggest that SV peptide plays a potent role in facilitating skeletal muscle regeneration by promoting the migration, and differentiation of myogenic precursor and progenitor cells.


Assuntos
Músculo Esquelético , Regeneração , Animais , Diferenciação Celular , Movimento Celular , Oligopeptídeos , Ratos
17.
Gan To Kagaku Ryoho ; 47(11): 1621-1623, 2020 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-33268740

RESUMO

We treated 3,164 patients with advanced cancer with dendritic cell therapy between July 2005 and March 2020. The effective rate in patients treated with dendritic cell therapy more than 3 times was 19.0%. Among them, we treated 133 cancer patients with a combination of immune checkpoint inhibitors and dendritic cell therapy between June 2015 and March 2020. The effective rate in these patients was 54.1%. We treated 98 cancer patients with dendritic cell therapy with neoantigens between March 2018 and March 2020. The effective rate in these patients treated with neoantigens was 38.7%. The effective rate in patients treated without neoantigens was 18.3%. Dendritic cell therapy with neoantigens enhanced the effective rate. The effective rate of dendritic cell therapy with both immune checkpoint inhibitors and neoantigens was 60.7%.


Assuntos
Antígenos de Neoplasias , Neoplasias , Células Dendríticas , Humanos , Imunoterapia , Neoplasias/terapia
18.
Peptides ; 134: 170405, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920045

RESUMO

Osteopontin-derived SVVYGLR (SV) 7-amino-acid sequence is a multifunctional and synthetic SV peptide implicated in angiogenesis, production of collagen III, and fibroblast differentiation into myofibroblasts. This study investigated the effect of the SV peptide on mucosal wound healing activity. Normal human-derived gingival fibroblasts (NHGF) and human oral mucosa keratinocytes (HOMK) were used for in vitro experiments. In addition, an oral punch wound was prepared at the buccal mucosa in male rats aged 11 weeks, and we evaluated the effect of local injection of SV peptide on wound healing. The synthetic SV peptide showed no influence on the proliferation and adhesion properties of NHGF and HOMK, but it enhanced the cell motility and migration activities. TGF-ß1 receptor inhibitor, SB431542 or SB505124, substantially suppressed the SV peptide-induced migration activity, suggesting an involvement of TGF-ß1 receptor activation. Furthermore, SV peptide accelerated the healing process of an in vivo oral wound model, compared with control groups. Further immunohistological staining of wound tissue revealed that an increase in capillary growth and the greater number of fibroblasts and myofibroblasts that migrated into the wound area might contribute to the facilitation of the healing process produced by the SV peptide. The SV peptide has beneficial effects on oral wound healing through enhancement of the earlier phase consisting of angiogenesis and remodeling with granulation tissue. The synthetic SV peptide can be a useful treatment option, particularly for intractable mucosal wounds caused by trauma or surgery for progressive lesions such as oral cancer.


Assuntos
Mucosa Bucal/efeitos dos fármacos , Oligopeptídeos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Mucosa Bucal/citologia , Mucosa Bucal/fisiologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Osteopontina/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
19.
Br J Cancer ; 122(7): 1037-1049, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066912

RESUMO

BACKGROUND: It is important to establish cancer stem cell (CSC)-targeted therapies to eradicate cancer. As it is a CSC marker, we focused on Kruppel-like factor 5 (KLF5) in this study. METHODS: We searched for candidate microRNAs (miRNAs) that inhibited KLF5 expression by in silico analyses and screened them in colon cancer cell lines. RESULTS: We identified one promising miRNA, miR-4711-5p, that downregulated KLF5 expression by direct binding. This miRNA suppressed cell proliferation, migration and invasion ability, as well as stemness, including decreased stem cell marker expression, reactive oxygen species activity and sphere formation ability. MiR-4711-5p inhibited the growth of DLD-1 xenografts in nude mice with no adverse effects. We found that miR-4711-5p provoked G1 arrest, which could be attributed to direct binding of miR-4711-5p to TFDP1 (a heterodimeric partner of the E2F family). Our findings also suggested that direct binding of miR-4711-5p to MDM2 could upregulate wild-type p53, leading to strong induction of apoptosis. Finally, we found that miR-4711-5p had a potent tumour-suppressive effect compared with a putative anti-oncomiR, miR-34a, in tumour cell cultures derived from five patients with colorectal cancer. CONCLUSIONS: Our data suggest that miR-4711-5p could be a promising target for CSC therapy.


Assuntos
Neoplasias do Colo/terapia , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/administração & dosagem , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição DP1/metabolismo , Animais , Ciclo Celular/genética , Proliferação de Células/fisiologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Transcrição DP1/genética
20.
Gan To Kagaku Ryoho ; 46(10): 1605-1607, 2019 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-31631149

RESUMO

We treated 123cancer patients with a combination of immune checkpoint inhibitor and dendritic cell therapy between June 2015 and April 2019. The effective rate of cases administered for B3times was 51.5%. Hyperthermia was found to enhance the effects of radiotherapy, chemotherapy, and immunotherapy. In addition, hyperthermia enhanced the effects of combined immunotherapy. In clinical cases and animal models, immunohistochemical staining showed that the expression of PD-L1 and MHC classⅠ and invasion of CD8 cells were increased after hyperthermia.


Assuntos
Imunoterapia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA