Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Cell Endocrinol ; 481: 26-34, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30528377

RESUMO

Expression of the glucose transporter GLUT4, encoded by Slc2a4 gene, is reduced in both type 1 and type 2 diabetes (T1D and T2D), contributing to glycemic impairment. The present study investigated epigenetic regulations at the Slc2a4 promoter in skeletal muscle of T1D- and T2D-like experimental models. Slc2a4/GLUT4 repression was observed in T1D and T2D and that was reversed by insulin and resveratrol treatments, respectively. In both T1D-like and T2D-like animals, tri-methylation at lysine 9 of histone 3 (H3K9me3) increased in the Slc2a4 enhancer segment, whereas MEF2A/D binding into this segment was reduced; all effects were reversed by respective treatments. This study reveals that increased H3K9me3 in the Slc2a4 promoter enhancer segment contributes to reduce GLUT4 expression in skeletal muscle and to worse glycemic control in diabetes, pointing to the H3K9me3 of Slc2a4 promoter as a potential target for development of new approaches for treating diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/genética , Histonas/metabolismo , Músculo Esquelético/metabolismo , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Epigênese Genética , Transportador de Glucose Tipo 4/metabolismo , Histonas/química , Humanos , Insulina , Lisina/metabolismo , Masculino , Metilação , Camundongos , Regiões Promotoras Genéticas , Ratos , Resveratrol
3.
Artigo em Inglês | MEDLINE | ID: mdl-30258406

RESUMO

The reduced expression of solute carrier family 2, facilitated glucose transporter member 4 (GLUT4) and hexokinase-2 (HK2) in skeletal muscle participates in insulin resistance of diabetes mellitus (DM). MicroRNAs (miRNAs) have emerged as important modulators of mRNA/protein expression, but their role in DM is unclear. We investigated miRNAs hypothetically involved in GLUT4/HK2 expression in soleus muscle of type 1 diabetes-like rats. In silico analysis revealed 651 miRNAs predicted to regulate solute carrier family 2 member 4 (Slc2a4) mRNA, several of them also predicted to regulate Hk2 mRNA, and 16 miRNAs were selected for quantification. Diabetes reduced Slc2a4/GLUT4 and Hk2/HK2 expression (50-77%), upregulated miR-29b-3p and miR-29c-3p (50-100%), and downregulated miR-93-5p, miR-150-5p, miR-199a-5p, miR-345-3p, and miR-532-3p (~30%) expression. Besides, GLUT4 and HK2 proteins correlated (P < 0.05) negatively with miR-29b-3p and miR-29c-3p and positively with miR-199a-5p and miR-532-3p, suggesting that these miRNAs could be markers of alterations in GLUT4 and HK2 expression. Additionally, diabetes increased the nuclear factor kappa B subunit 1 protein (p50) expression, a repressor of Slc2a4, which was also predicted as a target for miR-199a-5p and miR-532-3p. Correlations were also detected between these miRNAs and blood glucose, 24-h glycosuria and plasma fructosamine, and insulin therapy reversed most of the alterations. In sum, we report that diabetes altered miR-29b-3p, miR-29c-3p, miR-199a-5p and miR-532-3p expression in muscle of male rats, where their predicted targets Slc2a4/GLUT4 and Hk2/HK2 are repressed. These data shed light on these miRNAs as a markers of impaired skeletal muscle glucose disposal, and, consequently, glycemic control in diabetes.

4.
Sci Rep ; 8(1): 8109, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802324

RESUMO

Little is known about advanced glycation end products (AGEs) participation in glucose homeostasis, a process in which skeletal muscle glucose transporter GLUT4 (Scl2a4 gene) plays a key role. This study investigated (1) the in vivo and in vitro effects of AGEs on Slc2a4/GLUT4 expression in skeletal muscle of healthy rats, and (2) the potential involvement of endoplasmic reticulum and inflammatory stress in the observed regulations. For in vivo analysis, rats were treated with advanced glycated rat albumin (AGE-albumin) for 12 weeks; for in vitro analysis, soleus muscles from normal rats were incubated with bovine AGE-albumin for 2.5 to 7.5 hours. In vivo, AGE-albumin induced whole-body insulin resistance; decreased (~30%) Slc2a4 mRNA and GLUT4 protein content; and increased (~30%) the nuclear content of nuclear factor NF-kappa-B p50 subunit (NFKB1), and cellular content of 78 kDa glucose-regulated protein (GRP78). In vitro, incubation with AGE-albumin decreased (~50%) the Slc2a4/GLUT4 content; and increased cellular content of GRP78/94, phosphorylated-IKK-alpha/beta, nuclear content of NFKB1 and RELA, and the nuclear protein binding into Slc2a4 promoter NFKB-binding site. The data reveal that AGEs impair glucose homeostasis in non-diabetic states of increased AGEs concentration; an effect that involves activation of endoplasmic reticulum- and inflammatory-stress and repression of Slc2a4/GLUT4 expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Produtos Finais de Glicação Avançada/farmacologia , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Biomarcadores/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
5.
Molecules ; 22(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708105

RESUMO

Insulin resistance participates in the glycaemic control disruption in type 2 diabetes mellitus (T2DM), by reducing muscle glucose influx and increasing liver glucose efflux. GLUT4 (Slc2a4 gene) and GLUT2 (Slc2a2 gene) proteins play a fundamental role in the muscle and liver glucose fluxes, respectively. Resveratrol is a polyphenol suggested to have an insulin sensitizer effect; however, this effect, and related mechanisms, have not been clearly demonstrated in T2DM. We hypothesized that resveratrol can improve glycaemic control by restoring GLUT4 and GLUT2 expression in muscle and liver. Mice were rendered obese T2DM in adult life by neonatal injection of monosodium glutamate. Then, T2DM mice were treated with resveratrol for 60 days or not. Glycaemic homeostasis, GLUT4, GLUT2, and SIRT1 (sirtuin 1) proteins (Western blotting); Slc2a4, Slc2a2, and Pck1 (key gluconeogenic enzyme codifier) mRNAs (RT-qPCR); and hepatic glucose efflux were analysed. T2DM mice revealed: high plasma concentration of glucose, fructosamine, and insulin; insulin resistance (insulin tolerance test); decreased Slc2a4/GLUT4 content in gastrocnemius and increased Slc2a2/GLUT2 content in liver; and increased Pck1 mRNA and gluconeogenic activity (pyruvate tolerance test) in liver. All alterations were restored by resveratrol treatment. Additionally, in both muscle and liver, resveratrol increased SIRT1 nuclear content, which must participate in gene expression regulations. In sum, the results indisputably reveals that resveratrol improves glycaemic control in T2DM, and that involves an increase in muscle Slc2a4/GLUT4 and a decrease in liver Slc2a2/GLUT2 expression. This study contributes to our understanding how resveratrol might be prescribed for T2DM according to the principles of evidence-based medicine.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Estilbenos/metabolismo , Estilbenos/farmacologia , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 2/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 4/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , RNA Mensageiro/efeitos dos fármacos , Resveratrol , Sirtuína 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA