Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 17: 521-536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948385

RESUMO

Introduction: The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods: C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results: Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 µg/mL and 64.4 ± 8 µg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 µg/mL for MCF-7 and 166.4 ± 27 µg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion: The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38090280

RESUMO

Background: Breast cancer is a leading cause of death and one of the most common fatal medical conditions in the world. Chemical compounds of various types have been identified in the Red Sea marine sponge Xestospongia testudinaria, including sterol esters, sterols, indole alkaloids, and brominated polyunsaturated fatty acids. These compounds have demonstrated promising biological features, which in cludes anti-inflammatory, cancer preventive, and antioxidant capacities. Methods: The cytotoxic potential of Xestospongia testudinaria was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological alterations in MCF-7 cell line. Furthermore, the flow cytometry was also utilized to assess apoptosis and identify changes in the cell cycle; besides, cell migration was assessed by scratch wound-healing assay. Results: A significant dose-dependent decrease in the percentage of MCF-7 cell viability was observed with IC50 39.8 ug/mL. Functional studies were performed on MCF-7 to show that Xestospongia testudinaria raises apoptotic cell death and induces growth arrest at the G1/G0 while inhibiting cell migration in scratch assay. Conclusion: These results demonstrated that Xestospongia testudinaria extract has an inhibitory effect on breast cancer cells proliferation, migration and induce apoptosis. Thus, it holds great promise as a potential treatment for breast cancer.

3.
Plants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685882

RESUMO

Saudi Arabian flora have a history of use as folklore remedies, although such properties have yet to be explored rigorously, and the safety of such remedies should be assessed. This study determined the anti-proliferative, cytotoxic, and antioxidant properties of extracts of the following five plants indigenous to Saudi Arabia: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta, and Tribulus macropterus. The aerial parts of the five plants were collected from various locations of the western and northern regions of Saudi Arabia and used to prepare methanolic extracts. Three approaches were used to determine the proliferation and cytotoxicity effects using HaCaT cells: MTT, FACS, and confocal microscopy. Meanwhile, two approaches were used to study the antioxidant potential: DPPH (acellular) and RosGlo (cellular, using HaCaT cells). C. colocynthis possessed anti-proliferative activity against HaCaT cells, showing a significant decrease in cell proliferation from 24 h onwards, while R. stricta showed significant inhibition of cell growth at 120 and 168 h. The IC50 values were determined for both plant extracts for C. colocynthis, with 17.32 and 16.91 µg/mL after five and seven days of treatment, respectively, and for R. stricta, with 175 and 105.3 µg/mL after five and seven days of treatment. R. stricta and M. crassifolia exhibited the highest capacities for scavenging the DPPH radical with IC50 values of 335 and 448 µg/mL, respectively. The subsequent ROS-Glo H2O2 assay confirmed these findings. The R. stricta and M. crassifolia extracts showed potent antioxidant activity in both acellular and cellular models. The C. colocynthis extract also demonstrated significant anti-proliferation and cytotoxic activity, as did the R. stricta extract. These properties support their usage in folk medicine and also indicate a further potential for development for holistic medicinal use or as sources of new active compounds.

4.
Front Pharmacol ; 11: 546439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071779

RESUMO

Medicinal plants indicated for chronic diseases usually have good safety margins as they are intended for lifelong treatments. We hypothesized that they may provide patients with baseline protection to cancers and multidrug resistance-reversing phytochemicals resulting in successful prevention and/or adjuvant treatment of chemotherapy-resistant cancers. We selected 27 popular herbal infusions widely used in Nigeria for diabetes and studied their effects on a panel of liver (HepG2), colon (Caco2), and skin (B16-F10) cancer cells. Cytotoxicity was measured using the SRB staining assay. The 2D antimigratory effect was evaluated using an Oris™ platform. The P-glycoprotein (P-gp) efflux activity was evaluated using Rh-123 as a fluorescent probe. The inhibition of tyrosinase-mediated melanogenesis was evaluated by colorimetric enzymatic assays. Our results show that melanoma cell proliferation was strongly inhibited by Anogeissus leiocarpus (Combretaceae), Bridelia ferruginea (Phyllanthaceae), D. ogea (Leguminosae), and Syzygium guineense (Myrtaceae) extracts (GI50 = 50 µg/ml). Alstonia boonei (Apocynaceae), Gongronema latifolium (Asclepiadaceae), and Strophanthus hispidus (Apocynaceae) were preferentially toxic against Caco2 (GI50 = 50, 5 and 35 µg/ml, respectively). The most active extracts against different drug resistance mechanisms were B. ferruginea (inhibition of P-gp efflux, and impairing tyrosinase activity) and X. americana (inhibition of P-gp efflux). A. leiocarpus, Kaya senegalensis (Meliaceae), S. guineense, and Terminalia avicennioides (Combretaceae) significantly inhibited B16-F10 cell migration. Lupeol, ursolic acid, quercitrin, epicatechin, gallic acid, and ellagic acid were dereplicated by HPLC and HPTLC as their bioactive phytochemicals. In conclusion, the above in-vitro activities of herbal infusions regularly consumed by Nigerian diabetic patients may either act as a baseline chemoprotection or as sensitizing agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA