Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 20777, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247180

RESUMO

Radionuclide molecular imaging of cancer-specific targets is a promising method to identify patients for targeted antibody therapy. Radiolabeled full-length antibodies however suffer from slow clearance, resulting in high background radiation. To overcome this problem, a pretargeting system based on complementary peptide nucleic acid (PNA) probes has been investigated. The pretargeting relies on sequential injections of primary, PNA-tagged antibody and secondary, radiolabeled PNA probe, which are separated in time, to allow for clearance of non-bound primary agent. We now suggest to include a clearing agent (CA), designed for removal of primary tumor-targeting agent from the blood. The CA is based on the antibody cetuximab, which was conjugated to PNA and lactosaminated by reductive amination to improve hepatic clearance. The CA was evaluated in combination with PNA-labelled trastuzumab, T-ZHP1, for radionuclide HER2 pretargeting. Biodistribution studies in normal mice demonstrated that the CA cleared ca. 7 times more rapidly from blood than unmodified cetuximab. Injection of the CA 6 h post injection of the radiolabeled primary agent [131I]I-T-ZHP1 gave a moderate reduction of the radioactivity concentration in the blood after 1 h from 8.5 ± 1.8 to 6.0 ± 0.4%ID/g. These proof-of-principle results could guide future development of a more efficient CA.


Assuntos
Anticorpos Antineoplásicos/administração & dosagem , Anticorpos Antineoplásicos/química , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/química , Radioimunoterapia/métodos , Animais , Anticorpos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Cetuximab/sangue , Cetuximab/química , Feminino , Humanos , Imunoconjugados/farmacocinética , Camundongos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Terapia de Alvo Molecular/métodos , Ácidos Nucleicos Peptídicos/farmacocinética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Distribuição Tecidual , Trastuzumab/administração & dosagem , Trastuzumab/sangue , Trastuzumab/química
2.
Sci Technol Adv Mater ; 20(1): 291-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956733

RESUMO

Combining immunotherapeutic and radiotherapeutic technique has recently attracted much attention for advancing cancer treatment. If boron-incorporated hemagglutinating virus of Japan-envelope (HVJ-E) having high membrane fusion ability can be used as a boron delivery agent in boron neutron capture therapy (BNCT), a radical synergistic improvement of boron accumulation efficiency into tumor cells and antitumor immunity may be induced. In this study, we aimed to develop novel boron-containing biocompatible polymers modified onto HVJ-E surfaces. The copolymer consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and methacrylamide benzoxaborole (MAAmBO), poly[MPC-co-MAAmBO], was successfully synthesized by using a simple free radical polymerization. The molecular structures and molecular weight of the poly[MPC-co-MAAmBO] copolymer were characterized by nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. The poly[MPC-co-MAAmBO] was coated onto the HVJ-E surface via the chemical bonding between the MAAmBO moiety and the sugar moiety of HVJ-E. DLS, AFM, UV-Vis, and fluorescence measurements clarified that the size of the poly[MPC-co-MAAmBO]-coated HVJ-E, HVJ-E/p[MPC-MAAmBO], to be about 130 ~ 150 nm in diameter, and that the polymer having 9.82 × 106 ~ 7 boron atoms was steadily coated on a single HVJ-E particle. Moreover, cellular uptake of poly[MPC-co-MAAmBO] could be demonstrated without cytotoxicity, and the hemolysis could be successfully suppressed by 20%. These results indicate that the HVJ-E/p[MPC-MAAmBO] may be used as boron nanocarriers in a combination of immunotherapy with BNCT.

3.
Polymers (Basel) ; 11(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30960026

RESUMO

Development of new boron nanocarriers has been a crucial issue to be solved for advancing boron neutron capture therapy (BNCT) as an effective radiation treatment for cancers. The present study aimed to create a novel double-thermoresponsive boron-containing diblock copolymer based on poly(N-isopropylacrylamide) [poly(NIPAAm)], which exhibits two-step phase transitions (morphological transitions) at the temperature region below human body temperature. The boronated diblock copolymer considerably concentrates boron atoms into the water-dispersible (i.e., intravenous-administration possible) nanomicelles self-assembled by the first phase transition, and furthermore the properly controlled size and hydrophobicity of the second phase-transitioned nanoparticles are expected to make a significant contribution to the selective delivery and long-term retention of boron atoms into tumor tissues. Here we present the detailed synthesis of the strategic NIPAAm-based diblock copolymer with 3-acrylamidophenylboronic acid (PBA), i.e., poly(NIPAAm-block-NIPAAm-co-PBA), through a reversible addition-fragmentation chain transfer polymerization. Furthermore, the stepwise phase transition behavior of the obtained boronic-acid diblock copolymers was characterized in detail by temperature-variable ¹H and 11B-nuclear magnetic resonance spectroscopy. The phase-transition-induced molecular structural changes, including the structural compositions and sizes of nanomicelles and nanoparticles, are also discussed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA