RESUMO
We systematically studied the relation between the conditional auto-correlation function (CACF) and cross-correlation function (CCF) of biphotons or pairs of single photons. The biphotons were generated from a heated atomic vapor via the spontaneous four-wave mixing (SFWM) process. In practical usage, one single photon of a pair is utilized as the heralding photon, and another is employed as the heralded photon. Motivated by the data of CACF of the heralded photons versus CCF, we proposed a universal formula to predict the CACF. The derived formula was based on general theory and is also valid for the biphoton generation process of spontaneous parametric down-conversion (SPDC). With the formula, we utilized the experimentally determined parameters to predict CACFs, which can well agree with the measured CACFs. The proposed formula enables one to quantitatively know the CACF of heralded single photons without the measurement of Hanbury-Brown-Twiss-type three-fold coincidence count. This study provides a better understanding of biphoton generation using the SFWM or SPDC process. Our work demonstrates a valuable tool for analyzing a vital property of how the heralded photons are close to Fock-state single photons.
RESUMO
Two novel vanadoborate compounds, [Cu(en)2]3[Li(H2O)]4[Li(H2O)3]2[V12B18O50(OH)10(H2O)]2·33.5H2O (1) and (H2en)4[Li(H2O)]4[V12B18O55(OH)5(H2O)]·14H2O (2), were synthesized via hydrothermal synthesis under identical conditions except for temperature. Structural analysis revealed that although both contain [V12B18O60]n- cluster anion, the different countercations potentially lead to variations in the [V12B18O60]n- cluster anion skeletons. In compound 1, the V4+/V5+ ratio was 10:2; while in compound 2 the ratio was 11:1. It is speculated that different countercations may influence the valence states of cluster anions. In this study, quantum chemical calculations revealed that the aromaticity and activity of the two compounds were different, and two-dimensional correlation infrared spectroscopy (2D-COS-IR) under magnetic perturbation confirmed that distinct response peaks of functional group vibrations to the magnetic field due to the different V4+/V5+ ratios and aromaticity of the two compounds. An electrochemical analysis revealed that compound 2 exhibits higher electrocatalytic activity. The results of quantum chemical calculations are aligned not only with the changes in the 2D-COS-IR spectra but also with the conclusions obtained from experiments on electrochemical properties. Overall, this work proposes a novel strategy for interpreting the alteration of vanadoborate anionic skeleton due to the introduction of different countercations by combining 2D-COS-IR with quantum chemical calculations.
RESUMO
BACKGROUND: Neutrophil-lymphocyte ratio (NLR), fibrosis index based on four factors (Fib4), aspartate aminotransferase-to-platelet ratio index (APRI) can be used for prognostic evaluation of hepatocellular carcinoma. However, no study has established an individualized prediction model for the prognosis of hepatocellular carcinoma based on these factors. AIM: To screen the factors that affect the prognosis of hepatocellular carcinoma and establish a nomogram model that predicts postoperative liver failure after hepatic resection in patients with hepatocellular carcinoma. METHODS: In total, 220 patients with hepatocellular carcinoma treated in our hospital from January 2022 to January 2023 were selected. They were divided into 154 participants in the modeling cohort, and 66 in the validation cohort. Comparative analysis of the changes in NLR, Fib4, and APRI levels in 154 patients with hepatocellular carcinoma before liver resection and at 3 mo, 6 mo, and 12 mo postoperatively was conducted. Binary logistic regression to analyze the influencing factors on the occurrence of liver failure in hepatocellular carcinoma patients, roadmap prediction modeling, and validation, patient work characteristic curves (ROCs) to evaluate the predictive efficacy of the model, calibration curves to assess the consistency, and decision curve analysis (DCA) to evaluate the model's validity were also conducted. RESULTS: Binary logistic regression showed that Child-Pugh grading, Surgical site, NLR, Fib4, and APRI were all risk factors for liver failure after hepatic resection in patients with hepatocellular carcinoma. The modeling cohort built a column-line graph model, and the area under the ROC curve was 0.986 [95% confidence interval (CI): 0.963-1.000]. The patients in the validation cohort utilized the column-line graph to predict the probability of survival in the validation cohort and plotted the ROC curve with an area under the curve of the model of 0.692 (95%CI: 0.548-0.837). The deviation of the actual outcome curves from the calibration curves of the column-line plots generated by the modeling and validation cohorts was small, and the DCA confirmed the validity. CONCLUSION: NLR, Fib4, and APRI independently influence posthepatectomy liver failure in patients with hepatocellular carcinoma. The column-line graph prediction model exhibited strong prognostic capability, with substantial concordance between predicted and actual events.
RESUMO
The Bower's Berylmys (Berylmys bowersi) is one of the largest rodent species with a wide distribution range in southern China and the Indochinese Peninsula. The taxonomy and evolutionary history of the B. bowersi is still controversial and confusing. In this study, we used two mitochondrial (Cyt b and COI) and three nuclear (GHR, IRBP, and RAG1) genes to estimate the phylogeny, divergence times, and biogeographic history of B. bowersi. We also explored morphological variations among the specimens collected across China. Our phylogenetic analyses indicated that the traditional B. bowersi contains at least two species: B. bowersi and B. latouchei. Berylmys latouchei was considered a junior synonym of B. bowersi distributed in eastern China, which is confirmed to be distinguishable at specific level because of its larger size, relatively larger and whiter hind feet, and several cranial traits. The estimated split of B. bowersi and B. latouchei was at the early Pleistocene (ca. 2.00 Mya), which might be the outcome of the combined effects of climate change in the early Pleistocene and isolation by the Minjiang River. Our results highlight the Wuyi Mountains in northern Fujian, China, as a glacial refugia during the Pleistocene and call for more intensive surveys and systematic revisions of small mammals in eastern China.
RESUMO
Thorium oxide has many important applications in industry. In this article, theoretical calculations have been carried out to explore the hydrolysis reactions of the ThOn (n=1-3) clusters. The reaction mechanisms of the O-deficient ThO and the O-rich ThO3 are compared with the stoichiometric ThO2 . The theoretical results show good agreement with the prior experiments. It is shown that the hydrolysis mainly occurred on the singlet potential surface. The overall reactions consist of two hydrolysis steps which are all favourable in energy. The effects of oxygen content on the hydrolysis are elucidated. Interestingly, among them, the peroxo group O2 2- in ThO3 is converted to the HOO- ligand, behaving like the terminal O2- in the hydrolysis which is transformed into the HO- groups. In addition, natural bond orbital (NBO) analyses were employed to further understand the bonding of the pertinent species and to interpret the differences in hydrolysis.
RESUMO
BACKGROUND: Although exposure to ambient air pollution has been associated with mental disorder, little is known about its potential effects on children and adolescents, especially in Chinese population. We aimed to reveal the relationship of air pollutants with hospital outpatient visits for child and adolescence psychiatry (HOVCAP) in Shenzhen. METHODS: A case-crossover study based on time-series data was applied, and a distributed lag non-linear model (DLNM) was used to evaluate the non-linear and delayed effects of 4 major air pollutants (NO2, PM2.5, SO2 and O3) on HOVCAP. Least absolute shrinkage and selection operator (LASSO) regression was used to control the multicollinearity between covariates and to filter variables. RESULT: A total of 94,660 cases aged 3-18 were collected from 2014 to 2019 in the Mental Health Center of Shenzhen. Results of pollutants at mode value (M0) showed that in the single lag effect result, when the average daily concentration of NO2 at 24 µg/m3, there was a significant effect on HOVCAP over lag 1, lag 4 and lag 5, respectively. The cumulative RR of NO2 M0 value to the outpatient visits were 1.438 (1.137-1.818) over lag 0-2, 1.454 (1.120-1.887) over lag 0-3, 1.466 (1.084-1.982) over lag 0-4, 1.680 (1.199-2.354) over lag 0-5, 1.993 (1.369-2.903) over lag 0-6, and 2.069 (1.372-3.119) over lag 0-7. However, PM2.5, SO2, O3 were not associated with HOVCAP over neither single lag effects nor cumulative effects. The RR values both shown an increase either when NO2 increases by 10 units or when the maximum concentration of NO2 is reached. CONCLUSION: Our study suggests that exposure to the normal air quality of NO2 in Shenzhen may associated with the risk of HOVCAP. However, PM2.5, SO2, O3 were not associated with HOVCAP.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Psiquiatria , Criança , Adolescente , Humanos , Poluentes Atmosféricos/análise , Estudos Cross-Over , Pacientes Ambulatoriais , Dióxido de Nitrogênio , Poluição do Ar/análise , China/epidemiologia , Hospitais , Material Particulado/análiseRESUMO
OBJECTIVES: Salidroside is used for treating inflammation-based diseases; however, its molecular mechanism is unclear. In this study, we determined the protective role of salidroside on the endotoxin-induced damage caused to the mouse alveolar epithelial type II (MLE-12) cells and its underlying mechanism. METHODS: An in vitro model for acute lung injury was constructed by inducing the MLE-12 cells using lipopolysaccharide (lipopolysaccharides, 1 mg/L). Then, The MTT assay was conducted to assess the survival rate of the MLE-12 cells in the different groups. After the treatment, apoptosis of MLE-12 cells was determined, and the mRNA and protein expression of miR-199a-5p, HMGB1, NF-kB65, TNFAIP8L2, p-IkB-α, and TLR4 was estimated by Western Blotting and RT-PCR. ELISA was also used to measure the concentration of inflammatory cytokine molecules IL-1ß, IL-6, TNF-α, and IL-18 in the cell-free supernatant. Lastly, cell morphology was examined using the AO/EB technique. RESULTS: We showed that salidroside reduced the protein and gene expression of HMGB1, NF-kB65, miR-199a-5p, p-IkB-α, and TLR4, whereas it increased the gene and protein expression of TNFAIP8L2. Furthermore, it decreased the concentrations of cytokine molecules like IL-1ß, IL-6, TNF-α, and IL-18 in the cell-free supernatant. MLE-12 also showed a lower apoptosis rate, higher survival rate, and better cell morphology. CONCLUSION: Salidroside significantly inhibited the LPS-induced MLE-12 cell damage. Our results suggest that this could be by reducing miR-199a-5p and enhancing TNFAIP8L2 expression.
Assuntos
Proteína HMGB1 , MicroRNAs , Animais , Citocinas/metabolismo , Glucosídeos , Interleucina-18 , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis , RNA Mensageiro , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Asiatic shrews of the genus Chodsigoa (Soricidae, Eulipotyphla) currently comprise nine species, mostly occurring in southwest China. From May 2017 to August 2020, 11 specimens of Chodsigoa were collected from the Dabie Mountains in Anhui Province, eastern China. Their morphology was compared with other species within the genus and one mitochondrial (cytochrome b) and two nuclear (apolipoprotein B and breast cancer 1) genes were sequenced to estimate the phylogenetic relationships of these specimens. Based on morphological and molecular evidence, these specimens are recognized as a distinct species, Chodsigoadabieshanensis sp. nov., which is formally described here. Morphologically, the new species is most similar to Chodsigoahypsibia, but it is distinguishable from all known congeners by the combination of dark brownish pelage, small size, and relatively short tail. Phylogenetic analyses revealed that C.dabieshanensis sp. nov. forms a phylogenetic lineage sister to the clade containing C.parva + C.hypsibia. The-Kimura 2-parameter genetic distances of the cytochrome b (CYT B) gene between the new species and other nominal Chodsigoa species ranged between 8.6 and 17.6%. The new species is distributed at elevations from 750 to 1250 m in the Dabie Mountains and is geographically distant from other species in the genus.
RESUMO
We present a full quantum model to study the fidelity of single photons with different quantum states propagating in a medium exhibiting electromagnetically induced transparency (EIT). By using the general reservoir theory, we can calculate the quantum state of the transmitted probe photons that reveal the EIT phenomenon predicted by semiclassical theory while reflecting the influence of the quantum fluctuations of the strong coupling field. Our study shows that the coupling field fluctuations not only change the quantum state of the probe photons, but also slightly affect its transmittance. Moreover, we demonstrate that the squeezed coupling field can enhance the influence of its fluctuations on the quantum state of the probe photons, which means that the EIT effect can be manipulated by controlling the quantum state properties of the coupling field. The full quantum theory in this paper is suitable for studying quantum systems related to the EIT mechanism that would allow us to examine various quantum effects in EIT-based systems from a full quantum perspective.
RESUMO
Two new chemically stable metalloporphyrin-bridged metal-catechol frameworks, InTCP-Co and FeTCP-Co, were constructed to achieve artificial photosynthesis without additional sacrificial agents and photosensitizers. The CO2 photoreduction rate over FeTCP-Co considerably exceeds that obtained over InTCP-Co, and the incorporation of uncoordinated hydroxyl groups, associated with catechol, into the network further promotes the photocatalytic activity. The iron-oxo coordination chain assists energy band alignment and provides a redox-active site, and the uncoordinated hydroxyl group contributes to the visible-light absorptance, charge-carrier transfer, and CO2 -scaffold affinity. With a formic acid selectivity of 97.8 %, FeTCP-OH-Co affords CO2 photoconversion with a reaction rate 4.3 and 15.7 times higher than those of FeTCP- Co and InTCP-Co, respectively. These findings are also consistent with the spectroscopic study and DFT calculation.
RESUMO
Ni-rich layered oxides, like LiNi0.8Co0.1Mn0.1O2 (NCM811), have been widely investigated as cathodes due to their high energy density. However, gradual structural transformation during cycling can lead to capacity degradation and potential decay of cathode materials. Herein, we doped high-valence transition metal (TM) ions (V5+, Nb5+, and Zr4+) at the Ni site of NCM811 by first principles simulations and explored the mechanism of doping TMs in NCMs for enhancing the electrochemical performance. Analysis of the calculations shows that doping V, Nb and Zr has an efficient influence on alleviating the Ni oxidation, reducing the loss of oxygen, and facilitating Li+ migration. Moreover, V doping can further suppress the lattice distortion due to the radius of V5+ being close to the radius of Mn4+. In particular, compared with the barrier of the pristine NCM in Li divacancy, the barrier of V-doped NCM reaches the lowest. In conclusion, V is the most favorable dopant for NCM811 to improve the electrochemical properties and achieve both high capacity and cycling stability.
RESUMO
We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The linewidth and spectral brightness of our biphotons surpass those of the biphotons produced with the hot-atom SFWM in the previous works. Moreover, the generation rate of the sub-MHz biphoton source in this work can also compete with those of the sub-MHz biphoton sources of the cold-atom SFWM or cavity-assisted spontaneous parametric down conversion. Here, the biphoton linewidth is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the generation rate per linewidth is 1,500 pairs/(s·MHz) and the maximum two-photon correlation function, gs,as(2), of the biphotons is 42. This gs,as(2) violates the Cauchy-Schwarz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3×104 pairs/(s·MHz), while the maximum gs,as(2) became 6.7. In addition, we are able to tune the linewidth down to 290±20 kHz. This is the narrowest linewidth to date among all single-mode biphoton sources of room-temperature and hot media.
RESUMO
Based on first-principle calculations, we proposed a one two-dimensional (2D) blue AsP (b-AsP) monolayer as an ideal anode material for lithium/sodium-ion (Li/Na-ion) batteries for the first time. The b-AsP monolayer possesses thermal and dynamic stabilities. The system undergoes the transition from semiconductor to metal after Li/Na atoms are embedded, which ensures good electric transportation. Most remarkably, our results indicate that the b-AsP monolayer exhibits high theoretical capacities of 1011.2 mA h g-1 (for Li) and 1769.6 mA h g-1 (for Na), low average open circuit voltages of 0.17 eV for Li4AsP and 0.14 eV for Na7AsP systems and ultrafast diffusivity with the low energy barriers of 0.17/0.15 eV and 0.08/0.07 eV of the P/As sides for Li and Na, respectively. Given these exceptional properties, the synthesis of a buckled b-AsP monolayer is desired to achieve a promising electrode material for Li- and Na-ion batteries.
RESUMO
Efficient frequency conversion of photons has important applications in optical quantum technology because the frequency range suitable for photon manipulation and communication usually varies widely. Recently, an efficient frequency conversion system using a double-Λ four-wave mixing (FWM) process based on electromagnetically induced transparency (EIT) has attracted considerable attention because of its potential to achieve a nearly 100% conversion efficiency (CE). To obtain such a high CE, the spontaneous emission loss in this resonant-type FWM system must be suppressed considerably. A simple solution is to arrange the applied laser fields in a backward configuration. However, the phase mismatch due to this configuration can cause a significant decrease in CE. Here, we demonstrate that the phase mismatch can be effectively compensated by introducing the phase shift obtained by two-photon detuning. Under optimal conditions, we observe a wavelength conversion from 780 to 795 nm with a maximum CE of 91.2%±0.6% by using this backward FWM system at an optical depth of 130 in cold 87Rb atoms. The current work represents an important step toward achieving low-loss, high-fidelity quantum frequency conversion based on EIT.
RESUMO
Because of the high efficiency and mild reaction conditions, electrocatalytic CO2 reduction (ECR) has attracted significant attention in recent years. However, the specific mechanism of the formation of the two-electron production (CO or HCOOH) in this reaction is still unclear. Herein, with density functional theory calculation and experimental manipulation, the specific mechanism of the selective two-electron reduction of CO2 has been systematically investigated, employing the polyphenolate-substituted metalloporphyrinic frameworks, ZrPP-1-M (M = Fe, Co, Ni, Cu, and Zn), as model catalysts. Experimental observations and theoretical calculations discovered that ZrPP-1-Co is a more favorable catalyst for ECR among them. Compared with the formation of HCOOH, electroreduction of CO2 into CO has more beneficial thermodynamic and kinetic routes with ZrPP-1-Co as a catalyst. After introducing the r-GO for improving the conductivity, the Faradaic efficiency for CO formation is 82.4% at -0.6 v (vs RHE).
Assuntos
Migração Animal , Aves , Espécies em Perigo de Extinção , Animais , China , Ecossistema , Risco , Áreas AlagadasRESUMO
Understanding dietary selection and feeding strategies is important for the conservation and management of endangered primate species. Here, we conducted a preliminary study on the diet and feeding behavior of endangered Shortridge's langurs ( Trachypithecus shortridgei) within the Drung River Valley (Dulongjiang) in southwestern China. The study site lies at a high latitude (N27°47.5') and elevation (1 900 m a.s.l.) and is characterized by substantial annual rainfall (2 745.1 mm). From August 2012 to September 2013, we observed five groups of langurs and analyzed their overall food composition and dietary variation in spring and autumn. To understand their dietary adaptations to the distinctive habitat of the Drung River Valley, we also compared the diet of Shortridge's langurs to that of other Trachypithecus species inhabiting different environments. Results indicated that T. shortridgei fed on 52 plant species, 23 of which each accounted for ≥1% of their annual feeding time. Their primary dietary components included leaves (46.2%, young, mature, and petioles), fruits (28.7%, unripe 17.6%, ripe 11.1%), and mosses (10.2%). The langurs mainly consumed mature (34.2%) and young leaves (27.5%) in spring and ripe fruits (39.4%) and mature leaves (24.7%) in autumn. Two species of moss ( Macrothamnium macrocarpum and Scapania verrucosa, 21.2% of annual feeding time), which are usually found growing together on cliffs, played a relatively important role in the diet of T. shortridgei. The langurs mainly consumed ripe fruits of Saurauia napaulensis (7.1%) and Dendropanax burmanicus (7.1%), which were abundant at lower elevations. Trachypithecus species in temperate forests consumed more fruits and seeds but fewer leaves (similar mature leaves but fewer young leaves) than those species in tropical forests, which may be related to their availability and abundance. Compared to Trachypithecus species in temperate forests, the higher proportion of mosses and mature leaves but fewer young leaves in the annual diet of T. shortridgei are likely a response to the distinctive Drung River Valley habitat. Therefore, conservation of the main food plants of this threatened species could be vital for its survival and conservation management.
Assuntos
Dieta/veterinária , Comportamento Alimentar/fisiologia , Presbytini/fisiologia , Animais , ChinaRESUMO
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is one of the most common clinical diseases observed in captive wild boars, is usually caused by an imbalance in the gut microbiome, and is responsible for piglets significant mortality. However, little research has been undertaken into the structure and function of the intestinal microbial communities in wild boar with diarrhea influenced by enterotoxigenic E. coli. In this study, fecal samples were collected and 16S-rRNA gene sequencing was used to compare the intestinal microbiome of healthy captive wild boar and wild boar with diarrhea on the same farm. We found that the intestinal microbial diversity of healthy wild boar (HWB) was relatively high, while that of diarrheic wild boar (DWB) was significantly lower. Line Discriminant Analysis Effect Size showed that at the genus level, the abundance of Escherichia-Shigella and Fusobacterium was significantly higher in DWB. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that the expression of genes in pathways including infectious diseases: bacterial, metabolism of amino acids, membrane transport, and signal transduction was significantly higher in DWB. In summary, this study provides a theoretical basis for the design of appropriate means of diarrhea treatment in captive wild boar.
Assuntos
Microbiota , Sus scrofa , Animais , Fezes , Filogenia , RNA Ribossômico 16S/genética , SuínosRESUMO
H2S is abundantly available in nature, and it is a common byproduct in industries. Molybdenum sulfides have been proved to be active in the catalytic decomposition of hydrogen sulfide (H2S) to produce hydrogen. In this study, density functional theory (DFT) calculations are carried out to explore the reaction mechanisms of H2S with MS3 (M = Mo, W) clusters. The reaction mechanism of H2S with MoS3 is roughly the same as that of the reaction with WS3, and the free-energy profile of the reaction with MoS3 is slightly higher than that of the reaction with WS3. The overall driving forces (-ΔG) are positive, and the overall reaction barriers (ΔG b) are rather small, indicating that such H2 productions are product-favored. MS3 (M = Mo, W) clusters have clawlike structures, which have electrophilic metal sites to receive the approaching H2S molecule. After several hydrogen-atom transfer (HAT) processes, the final MS4·H2 (IM-4) complexes are formed, which could desorb H2 at a relatively low temperature. The singlet product MS4 clusters contain the singlet S2 moiety, similar to the adsorbed singlet S2 on the surface of sulfide catalysts. The theoretical results are compared with the experiments of heterogeneous catalytic decomposition of H2S by MoS2 catalysts. Our work may provide some insights into the optimal design of the relevant catalysts.
RESUMO
Three classical Fe-MOFs, viz., MIL-100(Fe), MIL-101(Fe), and MIL-53(Fe), were synthesized to serve as platforms for the investigation of structure-activity relationship and catalytic mechanism in the selective conversion of H2S to sulfur. The physicochemical properties of the Fe-MOFs were characterized by various techniques. It was disclosed that the desulfurization performances of Fe-MOFs with well-defined microstructures are obviously different. Among these, MIL-100(Fe) exhibits the highest catalytic performance (ca. 100% H2S conversion and 100% S selectivity at 100-180 °C) that is superior to that of commercial Fe2O3. Furthermore, the results of systematic characterization and DFT calculation reveal that the difference in catalytic performance is mainly because of discrepancy in the amount of Lewis acid sites. A plausible catalytic mechanism has been proposed for H2S selective conversion over Fe-MOFs. This work provides critical insights that are helpful for rational design of desulfurization catalysts.