Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1825-1832, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233411

RESUMO

In northern China, soil temperature slowly rises in spring, often subjecting apple roots to sub-low-temperature stress. Sugar acts as both a nutrient and signaling molecule in roots in response to low-temperature stress. To explore the effects of exogenous sugars on the growth and nutrient absorption of Malus baccata Borkh., we analyzed growth parameters, photosynthetic characteristics of leaves, and mineral element content in different tissues of M. baccata seedlings under five treatments, including control (CK), sub-low root zone temperature (L), sub-low root zone temperature + sucrose (LS), sub-low root zone temperature + fructose (LF), and sub-low root zone temperature + glucose (LG). The results showed that compared to CK, plant height, root growth parameters, aboveground biomass, leaf photosynthesis, fluorescence parameters, chlorophyll content, and the contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in M. baccata seedlings were significantly decreased under the L treatment, and the content of Ca in roots was significantly increased. Compared to the L treatment without exogenous sugar, photosynthesis, functional parameters, chlorophyll content, and growth parameters increased to different degrees after exogenous sucrose, fructose, and glucose application. The N and P contents in roots were significantly increased. The N, P, and K contents significantly increased in stems while only the Ca content significantly increased in stems treated with sucrose. Leaf N, P, K, Ca, and Mg contents significantly increased after being treated with the three exogenous sugars. In conclusion, exogenous sugars can improve photosynthetic efficiency, promote mineral element absorption, and alleviate the inhibition of growth and development of M. baccata at sub-low root zone temperatures, and the effect of sucrose treatment was better than that of fructose and glucose treatments.


Assuntos
Temperatura Baixa , Malus , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Malus/crescimento & desenvolvimento , Malus/metabolismo , Malus/efeitos dos fármacos , Nutrientes/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , China
3.
Curr Med Sci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285051

RESUMO

OBJECTIVE: This study aimed to design and evaluate the efficacy of pyrrolidone derivatives as potential therapeutic agents against diffuse large B-cell lymphoma (DLBCL), a common and heterogeneous malignancy of the adult lymphohematopoietic system. Given the limitations of current therapies, there is a pressing need to develop new and effective drugs for DLBCL treatment. METHODS: A series of pyrrolidone derivatives were synthesized, and their antitumor activities were assessed, particularly against DLBCL cell lines. Structure-activity relationship (SAR) analysis was conducted to identify key structural components essential for activity. The most promising compound, referred to as compound 7, was selected for further mechanistic studies. The expression levels of relevant mRNA and protein were detected by RT-qPCR and Western blotting, and the expression of mitochondrial membrane potential and ROS was detected using flow cytometry for further assessment of cell cycle arrest and apoptosis. RESULTS: The compound 7 exhibited good antitumor activity among the synthesized derivatives, specifically in DLBCL cell lines. SAR analysis highlighted the critical role of α, ß-unsaturated ketones in the antitumor efficacy of these compounds. Mechanistically, compound 7 was found to induce significant DNA damage, trigger an inflammatory response, cause mitochondrial dysfunction, and disrupt cell cycle progression, ultimately leading to apoptosis of DLBCL cells. CONCLUSION: The compound 7 has good antitumor activity and can induce multiple cellular mechanisms leading to cancer cell death. These findings warrant further investigation of the compound 7 as a potential therapeutic agent for DLBCL.

4.
Nano Lett ; 24(37): 11512-11519, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230027

RESUMO

Metal-oxo clusters show great promise in lithium ion battery applications as anode materials by virtue of their native nature of well-defined nanostructures and multielectron redox activities. However, their intrinsic unsatisfactory electrical conductivity and tendency to aggregation make them difficult to fully utilize. Herein, a well-dispersed Mn12O12(CH3COO)16(H2O)4 (denoted as Mn12) cluster is constructed by rationally adopting carbon dots (CDs) with nanosize and high conductivity as stabilizers. Thanks to the fully exposed redox sites of Mn12 clusters and additional interfacial energy storage mechanism, the optimized Mn12/CDs-1:20 anode delivers a high specific capacity of 1643 mAh g-1 at 0.2 A g-1 (0.25 C) and exhibits outstanding rate and cycling capabilities. This paper provides a green and efficient paradigm to synthesize well-dispersed manganese-oxo clusters for the first time and builds a new platform for cluster-based energy storage.

5.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1573-1582, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235015

RESUMO

Low temperature (LT) in spring usually occurs at the booting of winter wheat, resulting in reduction of wheat yield. In this study, we used the LT-sensitive wheat cultivar 'Wanmai 52' and the LT-insensitive wheat cultivar 'Yannong 19' as experimental materials to conduct LT treatment (-2 ℃ and 0 ℃) at booting stage. After the LT treatment, we sprayed 6-benzylaminoadenine (6-BA) solutions with concentrations of 10, 20, and 30 mg·L-1 respectively, with equal mass distilled water as control to investigate the effects of spraying 6-BA on the physiological characteristics, yield and quality of wheat flag leaves after LT stress at booting stage. The results showed that compared with the control, young ear of wheat treated with exogenous spraying 6-BA was fuller, the floret morphology was improved, and the number of vascular bundles under the spike was increased. 6-BA application promoted the accumulation of soluble sugar, soluble protein, and proline in flag leaves. The activities of peroxidase and superoxide dismutase were increased, and the content of malondialdehyde was decreased. Exogenous 6-BA application decreased the number of degenerated spikes of wheat, increased the number of grains per spike and 1000-grain weight, as well as the contents of grain protein, wet gluten, and sedimentation value. In summary, exogenous 6-BA application could effectively alleviate the effects of LT stress on flag leaf and yield of wheat. Under the conditions of this experiment, the mitigation effect of spraying 6-BA solution on Yannong 19 was higher than that of Wanmai 52, and the mitigation effect of spraying 20 mg·L-1 6-BA solution on low temperature stress was the best.


Assuntos
Temperatura Baixa , Folhas de Planta , Purinas , Estresse Fisiológico , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Purinas/farmacologia , Biomassa , Reguladores de Crescimento de Plantas/farmacologia , Controle de Qualidade , Compostos de Benzil
6.
Nat Commun ; 15(1): 6801, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122707

RESUMO

One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving the identification of high-specificity spatial proteomes. The resulting native proximity proteomes are enriched for human genes dysregulated in the brain of autistic individuals, and reveal proximity interactions between proteins from high-confidence risk genes with those of lower-confidence that may provide new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Encéfalo , Modelos Animais de Doenças , Proteoma , Proteômica , Animais , Proteoma/metabolismo , Camundongos , Humanos , Encéfalo/metabolismo , Proteômica/métodos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Fenótipo , Edição de Genes , Masculino , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Feminino , Sistemas CRISPR-Cas
7.
Cell Biosci ; 14(1): 106, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180059

RESUMO

BACKGROUND: The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear. RESULTS: Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism. CONCLUSIONS: In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.

9.
J Mater Chem B ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158840

RESUMO

Antibiotic resistance continues to pose significant health challenges. Considering severe limitations in the discovery and supply of new antibiotics, there is an unmet need to design alternative and more effective strategies for addressing this global issue. Use of polymeric nanoparticles with cationic shell surfaces offers a highly promising approach to coupling their inherent bactericidal action with sustained delivery of small lipophilic microbicides. We have utilized this platform for assembling multi-tasking soft core-shell nanoparticles from star polymers with the desired asymmetric arm composition. These stable nanoparticles with low critical micelle concentration imparted intrinsic antimicrobial potency due to high positive charge density in the corona, as well as the loading of active biocidal agents (such as curcumin and terbinafine) for potential dual and coadjuvant inhibition. This strategic combination allows for both immediate (direct contact) and extended (drug delivery) antibacterial activities for better therapeutic efficacy. Micellar nanoparticles with and without therapeutic cargo were highly efficient against both Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), representative Gram-negative and Gram-positive bacteria, respectively. Interestingly, we observed bacteria- and concentration-dependent effects, in which higher concentrations of charged nanoparticles were more effective against E. coli, whereas B. subtilis was inhibited only at lower concentrations. This work highlights a valuable platform to achieve combination therapy through nanoparticles with charged coronas and delivery of potent therapeutics to overcome antimicrobial resistance.

10.
Surgery ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191601

RESUMO

BACKGROUND: The slit-mesh technique for laparoscopic groin hernia repair remains controversial. We present the largest cohort of patients to date that have undergone laparoscopic hernia repair with this technique and aim to evaluate the impact of both techniques on postoperative recurrence and other secondary outcomes. METHODS: A retrospective, single-institution cohort study of patients who underwent a laparoscopic groin hernia repair over a 5.5-year period was performed. Univariate and multivariate analyses were performed to identify factors associated with recurrence, chronic pain, complications, length of stay, and operative time. A propensity score analysis also was performed. Time to recurrence was then subsequently plotted on a Kaplan-Meier survival analysis. RESULTS: In total, 611 laparoscopic groin hernia repairs (nonslit: n = 353; slit: n = 258) were reviewed. Mean follow-up duration was 6.6 months. On the multivariate analysis, body mass index was inversely correlated with recurrence (odds ratio, 0.792; 95% confidence interval, 0.656-0.956), whereas a slit mesh had lower recurrence (odds ratio, 0.228; 95% confidence interval, 0.064-0.809). In the propensity score-adjusted analysis, slit mesh remained significantly associated with reduced recurrence (adjusted odds ratio, 0.251; 95% confidence interval, 0.070-0.900), with no differences in chronic pain (adjusted odds ratio, 1.297; 95% confidence interval, 0.275-6.128) or postoperative complications (adjusted odds ratio, 1.808; 95% confidence interval, 0.429-7.620). Operative time also was reduced in the slit-mesh group (P = .009). CONCLUSIONS: The slit-mesh technique was associated with a reduced likelihood of postoperative recurrence and shorter operative time, with no impact on postoperative chronic pain or complications. A lower body mass index was also correlated with increased likelihood of postoperative recurrence.

11.
EFORT Open Rev ; 9(8): 806-816, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087493

RESUMO

Purpose: In the military, neck pain is second to low back pain among musculoskeletal disorders. However, the prevalence and related factors of neck pain in military personnel have not been systematically investigated, which may lead to the lack of neck pain prevention and the generation of additional medical expenses, posing challenges to medical care. This review aimed to obtain the prevalence and related factors for neck pain in military personnel in an attempt to provide directions for prevention and intervention. Methods: We searched PubMed, Embase, and Cochrane databases in December 2021. Two researchers independently screened studies according to eligibility criteria and assessed study quality. Results: We screened titles and abstracts of 503 articles, and 17 articles met the inclusion criteria. Sixteen articles received moderate to high-quality evaluations. Neck pain is common in the military, with 1-year prevalence as high as 83% and lifetime prevalence as high as 78%. Old age (OR = 5.0), poor neck mobility (OR = 3.61), shoulder pain (OR = 4.9), low back pain (OR = 2.3), high-G pilots (OR = 1.6), longer flight time (OR = 2.53), type of aircraft (OR = 3.93), and use of helmets and night vision systems (OR = 1.9) may be associated with the prevalence of neck pain. Conclusion: Neck pain is highly prevalent in military personnel and exhibits a substantial lifetime prevalence rate. The high prevalence rate of neck pain in the military is related to many individual-related factors and work-related factors. The in-depth assessment and prevention of specific factors is an important direction of future research.

12.
Food Sci Nutr ; 12(7): 5111-5120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055182

RESUMO

Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, ß-carotene (ß-CE). CPH/TA complex-based nanoemulsion system for ß-CE delivery was studied, focusing on the effect of ß-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high ß-CE content (>71.5 µg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of ß-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying ß-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of ß-CE were found to be up to 90%, which suggests an excellent protective effect for ß-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the ß-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.

13.
Res Sq ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011107

RESUMO

Prader-Willi Syndrome (PWS) is caused by loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain. In past work, we discovered that euchromatic histone lysine N-methyltransferase-2 (EHMT2/G9a) inhibitors were capable of un-silencing PWS-associated genes by restoring their expression from the maternal chromosome. Here, in mice lacking the Ehmt2 gene, we document un-silencing of the imprinted Snrpn/Snhg14 gene on the maternal chromosome in the late embryonic and postnatal brain. Using PWS and Angelman syndrome patient derived cells with either paternal or maternal deletion of 15q11-q13, we have found that chromatin of maternal PWS-IC is closed and has compact 3D folding confirmation. We further show that a new and distinct noncoding RNA preferentially transcribed from upstream of the PWS-IC interacts with EHMT2 and forms a heterochromatin complex to silence gene expression of SNRPN in CIS on maternal chromosome. Taken together, these findings demonstrate that allele-specific recruitment of EHMT2 is required to maintain the maternal imprints. Our findings provide novel mechanistic insights and support a new model for imprinting maintenance of the PWS imprinted domain.

14.
ACS Sens ; 9(8): 4107-4118, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39046797

RESUMO

A Pt nanoparticle-immobilized WO3 material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO3 on the d-band structure of Pt and the synergistic effect of Pt and the WO3 matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO3 nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO3 nanosheets. Notably, Pt-modified WO3 nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance (S = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Ptδ+-Ov-W5+ sites are recognized as the active sites, and the oxygen vacancies of the WO3 matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO3-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.


Assuntos
Derivados de Benzeno , Benzeno , Óxidos , Oxigênio , Platina , Tungstênio , Tungstênio/química , Platina/química , Óxidos/química , Oxigênio/química , Benzeno/química , Derivados de Benzeno/química , Nanoestruturas/química , Xilenos/química , Nanopartículas Metálicas/química , Tolueno/química , Técnicas Eletroquímicas/métodos , Teoria da Densidade Funcional
15.
Adv Sci (Weinh) ; : e2403732, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031635

RESUMO

Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.

16.
Behav Brain Funct ; 20(1): 14, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898502

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS: Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS: C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS: Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS: Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.


Assuntos
Tonsila do Cerebelo , Transtorno do Espectro Autista , Camundongos Endogâmicos C57BL , Microglia , Oligodendroglia , Comportamento Social , Animais , Masculino , Microglia/metabolismo , Camundongos , Tonsila do Cerebelo/metabolismo , Feminino , Oligodendroglia/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Perfilação da Expressão Gênica/métodos , Fenótipo , Caracteres Sexuais , Transcriptoma , Modelos Animais de Doenças , Ocitocina/genética , Ocitocina/metabolismo
17.
Chin J Integr Med ; 30(9): 809-817, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38900226

RESUMO

OBJECTIVE: To explore the effect of acupotomy intervention on autophagy of chondrocytes in rabbits with knee osteoarthritis (KOA), and to determine the possible mechanisms of acupotomy to alleviate cartilage degeneration. METHODS: The modified Videman method was used to construct a KOA rabbit model. After modeling, 40 rabbits were randomly divided into 4 groups by a random number table: control; KOA (model); KOA + acupotomy (acupotomy), and KOA + sham acupotomy (sham), 10 in each group. After a 3-week treatment course, the knee joint activity was determined by the modified Lequesne MG index. Hematoxylin-eosin staining staining was used to examine the morphological changes of chondrocytes. Autophagy of chondrocytes was observed by transmission electron microscopy. The surface morphology of cartilage tissue was observed by scanning electron microscope. The mRNA and protein levels of AMP kinase/mammalian target of rapamycin/Unc-51 (AMPK/mTOR/ULK1) signal pathway key proteins, autophagy-related factor Beclin-1 and microtubule-associated protein 1A/1B light chain 3 (LC3) in rabbit knee cartilage were assessed by real-time fluorescence quantitative polymerase chain reaction and Western blot, respectively. RESULTS: The modified Lequesne MG score of acupotomy group was significantly lower than that of model group (P<0.05). Pathological results showed that chondrocyte autophagy decreased and cartilage surface was rough in the model group, which recovered after acupotomy treatment. The mRNA expressions of AMPK, ULK1, Beclin-1 and the protein levels of p-AMPK, p-ULK1, Beclin-1, and LC3 II/LC3 I were decreased in the model group, while the mRNA and protein expressions of mTOR were increased (P<0.01). However, acupotomy treatment reversed these abnormal changes (P<0.05). CONCLUSIONS: Acupotomy could effectively up-regulate the expressions of AMPK, ULK1 and Beclin1, reduce the expression of mTOR, promote autophagy, and alleviate joint degeneration. Acupotomy is a promising complementary and alternative therapy for KOA.


Assuntos
Terapia por Acupuntura , Autofagia , Condrócitos , Osteoartrite do Joelho , Animais , Coelhos , Condrócitos/patologia , Condrócitos/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Terapia por Acupuntura/métodos , Transdução de Sinais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Modelos Animais de Doenças , Masculino , Serina-Treonina Quinases TOR/metabolismo
18.
Chem Commun (Camb) ; 60(55): 6988-6998, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895748

RESUMO

Lead halide perovskite nanocrystals (PNCs) hold immense promise in high-performance light-emitting diodes (LEDs) for future high-definition displays. Their adjustable bandgaps, vivid colors, and good carrier mobility are key factors that make them a potential game-changer. However, to fully harness their potential, the efficiency and long-term stability of PNCs-based light-emitting diodes (PNC-LEDs) must be enhanced. Recent material research results have shed light on the leading cause of performance decline in PNC-LEDs, which is ionic migration linked to surface defects and grain boundary imperfections. This review aims to present recent advancements in the modification strategies of PNCs, focusing on obtaining high-quality PNCs for LEDs. The PNC modification strategies are first summarized, including crystal structure regulation, nanocrystal size tuning, ligand exchange, and surface passivation. Then, the effects of these material design aspects on LED device performances, such as efficiency, brightness, and stability, are presented. Based on the efficient modification strategies, we propose promising material design insights for efficient and stable PNC-LEDs.

19.
Ecotoxicol Environ Saf ; 281: 116613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908057

RESUMO

Exposure to carbon disulfide (CS2) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS2 exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS2-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS2 exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS2 exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.


Assuntos
Dissulfeto de Carbono , Mitocôndrias , Estresse Oxidativo , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Dissulfeto de Carbono/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino , Linhagem Celular Tumoral , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo
20.
Cell Rep ; 43(7): 114376, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900637

RESUMO

Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3-mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We apply an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in humans and mice. We unexpectedly discover an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts are altered in Shank3-mutant mice and postmortem brain tissues from individuals with autism spectrum disorder. The enhanced SHANK3 transcriptome significantly improves the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest that both deterministic and stochastic transcription of the genome is associated with SHANK family genes.


Assuntos
Transtorno Autístico , Proteínas do Tecido Nervoso , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Humanos , Camundongos , Transtorno Autístico/genética , Transcrição Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transcriptoma/genética , Transtorno do Espectro Autista/genética , Processos Estocásticos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA