Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.136
Filtrar
1.
Biomed Eng Lett ; 14(4): 859-866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946823

RESUMO

Practical application of surface-enhanced Raman spectroscopy (SERS) has suffered from several limitations by heterogeneous distribution of hot-spots, such as high signal fluctuation and the resulting low reliability in detection. Herein, we develop a strategy of more sensitive and reliable SERS platform through designing spatially homogeneous gold nanoparticles (GNPs) on a uniform gold nanoisland (GNI) pattern. The proposed SERS substrate is successfully fabricated by combining two non-lithographic techniques of electron beam evaporation and convective self-assembly. These bottom-up methods allow a simple, cost-effective, and large-area fabrication. Compared to the SERS substrates obtained from two separate nanofabrication methods, Raman spectra measured by the samples with both GNPs and GNIs present a significant increase in the signal intensity as well as a notable improvement in signal fluctuation. The simulated near-field analyses demonstrate the formation of highly amplified plasmon modes within and at the gaps of the GNP-GNI interfaces. Moreover, the suggested SERS sensor is evaluated to detect the glucose concentration, exhibiting that the detection sensitivity is improved by more than 10 times compared to the sample with only GNI patterns and a fairly good spatial reproducibility of 7% is accomplished. It is believed that our suggestion could provide a potential for highly sensitive, low-cost, and reliable SERS biosensing platforms that include many advantages for healthcare devices. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00381-4.

2.
World J Clin Oncol ; 15(6): 755-764, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946832

RESUMO

BACKGROUND: Tankyrase 2 (TNKS2) is a potential candidate molecular target for the prognosis and treatment of non-small cell lung cancer (NSCLC), but its biological functions are unclear. AIM: To investigate the biological functions of TNKS2 in NSCLC. METHODS: Using a lentiviral vector, we generated H647 model cells with TNKS2 knockdown by RNA interference and A549 model cells with TNKS2 overexpression by transfection with a TNKS2 overexpressing plasmid. Increased and decreased expression levels of TNKS2 in the two cell lines were verified using real-time reverse transcriptase-polymerase chain reaction and Western blot analyses. Cell apoptosis, proliferation, and migration were determined using flow cytometry, carboxyfluorescein succinimidyl ester staining, and scratch assay, respectively. Immunofluorescence staining was conducted to examine TNKS2 and ß-catenin expression levels in the two transfected cell lines and the non-transfected cells. RESULTS: TNKS2 mRNA and protein expression was significantly higher in the highly malignant NCI-H647 cells, while it remained at a low level in the less malignant A549 cells. Lentivirus-mediated overexpression of TNKS2 in A549 cells resulted in a 3-fold increase in gene expression and a 1.7-fold increase in protein expression (P < 0.01). Conversely, shRNA interference targeting TNKS2 Led to an 8-fold decrease in gene expression and a 3-fold decrease in protein expression (P < 0.01) in NCI-H647 cells. Furthermore, the cell apoptosis rate was significantly reduced (50%) and cell migration rate was increased (35%) in the TNKS2 overexpression group than in the control group (P < 0.05). In contrast, shTNKS2 promoted apoptosis by more than one fold and reduced migration by 60% (P < 0.05). Immunofluorescence analysis revealed enhanced nuclear localization of ß-catenin fluorescence signal associated with high TNKS2 expression levels. Western blot analysis investigating TNKS2/ß-catenin-related proteins indicated consistent changes between TNKS2 and ß-catenin expression in lung cancer cells, whereas Axin displayed an opposite trend (P < 0.05). CONCLUSION: The obtained results revealed that TNKS2 may serve as an adverse prognostic factor and a potential therapeutic target in NSCLC.

3.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965312

RESUMO

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Assuntos
Células Epiteliais , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA
5.
Heliyon ; 10(12): e32727, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994078

RESUMO

Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.

6.
World J Gastrointest Oncol ; 16(6): 2646-2662, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994157

RESUMO

BACKGROUND: Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear. AIM: To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI). METHODS: Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting. RESULTS: Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (ß-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/ß-catenin/c-Myc pathway. CONCLUSION: The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/ß-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.

7.
World J Clin Cases ; 12(19): 3791-3799, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994323

RESUMO

BACKGROUND: The incidence and mortality of lung cancer have increased annually. Accurate diagnosis can help improve therapeutic efficacy of interventions and prognosis. Percutaneous lung biopsy is a reliable method for the clinical diagnosis of lung cancer. Ultrasound-guided percutaneous lung biopsy technology has been widely promoted and applied in recent years. AIM: To investigate the diagnostic value of contrast-enhanced ultrasound (CEUS)-guided percutaneous biopsy in peripheral pulmonary lesions. METHODS: We retrospectively collected data on 237 patients with peripheral thoracic focal lesions who underwent puncture biopsy at Wuxi People's Hospital. The patients were randomly divided into two groups: The CEUS-guided before lesion puncture group (contrast group) and conventional ultrasound-guided group (control group). Analyze the diagnostic efficacy of the puncture biopsy, impact of tumor size, and number of puncture needles and complications were analyzed and compared between the two groups. RESULTS: Accurate pathological results were obtained for 92.83% (220/237) of peripheral lung lesions during the first biopsy, with an accuracy rate of 95.8% (113/118) in the contrast group and 89.9% (107/119) in the control group. The difference in the area under the curve (AUC) between the contrast and the control groups was not statistically significant (0.952 vs 0.902, respectively; P > 0.05). However, when the lesion diameter ≥ 5 cm, the diagnostic AUC of the contrast group was higher than that of the control group (0.952 vs 0.902, respectively; P < 0.05). In addition, the average number of puncture needles in the contrast group was lower than that in the control group (2.58 ± 0.53 vs 2.90 ± 0.56, respectively; P < 0.05). CONCLUSION: CEUS guidance can enhance the efficiency of puncture biopsy of peripheral pulmonary lesions, especially for lesions with a diameter ≥ 5 cm. Therefore, CEUS guidance has high clinical diagnostic value in puncture biopsy of peripheral focal lung lesions.

10.
Nat Genet ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039280

RESUMO

Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.

11.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3552-3565, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041127

RESUMO

Based on UHPLC-Q-Exactive Orbitrap HRMS coupled with the network pharmacology and molecular docking, the common material basis and molecular mechanisms of Bletillae Rhizoma for melasma, gastrointestinal hemorrhage, lung cancer and bronchoplumonary inflammation as "homotherapy for heteropathy" were explored. The fingerprint of 17 batches of Bletillae Rhizoma from different areas was established using HPLC, and the similarity analysis was carried out. The common chemical components of the 17 batches of Bletillae Rhizoma were identified using UHPLC-Q-Exactive Orbitrap HRMS. Depending on the bioavailability and drug-like properties of the common components, the active chemical components were screened, and then their protein targets were collected using the Traditional Chinese Medicine Database and Analysis Platform(TCMSP) and SwissTargetPrediction database. The protein targets related to diseases were retrieved from the databases DrugBank, TTD and GeneCards to produce a Venn diagram. The shared targets were obtained between drugs and diseases as "homotherapy for heteropathy" targets. The protein-protein interaction(PPI) was analyzed with the STRING database, and KEGG and GO analyses of the "homotherapy for heteropathy" targets were performed using the Bioconductor database. Cytoscape 3.7.2 software was employed to construct the "chemical components of Bletillae Rhizoma-homotherapy for heteropathy targets" network and PPI network, and topological analysis was conducted to screen out the key active chemical components and core targets. Finally, the affinity between the active components and core targets was evaluated using the molecular docking by AutoDock Vina 4.2.6, which verified the interaction between them. Thirteen common peaks were identified by fingerprint chromatography, and the similarity between different batches was 0.941-0.998. Fifty-three chemical components were identified by mass spectrometry in Bletillae Rhizoma, and 18 common chemical constituents were obtained in the 17 batches of Bletillae Rhizoma. Network pharmacologic screening showed that the pharmacodynamic substances of Bletillae Rhizoma for melasma, gastrointestinal hemo-rrhage, lung cancer and bronchoplumonary inflammation with "homotherapy for heteropathy" were 11 compounds, such as polysaccharides, biphenanthrenes, dihydrophenanthrenes and bibenzyls. There were 42 common targets identified for the treatment of different diseases. These targets were involved in biological processes such as cell response to chemical stress, reactive oxygen species and positive regulation of protein kinase B signal transduction. They were also involved in 121 signaling pathways, encompassing vital pathways such as PI3K-Akt, ErbB, Rap1, FoxO, MAPK and estrogen. Molecular docking results showed a strong affinity between the key active components and the core targets. This study provides a preliminary explanation of how Bletillae Rhizoma exerts its therapeutic effect on chloasma, gastrointestinal hemorrhage, lung cancer, and bronchopneumonic lesions as "homotherapy for heteropathy" through a combined action involving multiple components, targets, and pathways. These findings offer a certain theoretical basis for the further deve-lopment and application of Bletillae Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Rizoma , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Cromatografia Líquida de Alta Pressão , Rizoma/química , Neoplasias Pulmonares/tratamento farmacológico , Hemorragia Gastrointestinal/tratamento farmacológico , Melanose/tratamento farmacológico , Orchidaceae/química , Inflamação/tratamento farmacológico , Espectrometria de Massas
12.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999027

RESUMO

The whole Hypericum patulum Thunb. plant is utilized in traditional medicine for its properties of clearing heat, detoxifying, soothing meridians, relaxing the liver, and stopping bleeding. In folk medicine, it is frequently used to treat hepatitis, colds, tonsillitis, and bruises. Phytochemical investigation of a 30% ethanol extract of the fresh ripe fruits of H. patulum has resulted in the isolation of two new pinane-type monoterpenoid glycosides 1-2, named patulumside E-F, and three new chain-shaped monoterpenoid glycosides 3-5, named patulumside G-H, J. Their structures were determined using extensive spectroscopic techniques, such as HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD) calculation. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. This research represents the inaugural comprehensive phytochemical study of H. patulum, paving the way for further exploration of monoterpenoid glycosides.


Assuntos
Frutas , Glicosídeos , Hypericum , Monoterpenos , Extratos Vegetais , Hypericum/química , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Camundongos , Animais , Células RAW 264.7 , Frutas/química , Monoterpenos/química , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
13.
ACS Appl Mater Interfaces ; 16(28): 36527-36538, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38961586

RESUMO

The development of broadband photosensors has become crucial in various fields. Indium-gallium-zinc oxide (IGZO, In:Ga:Zn = 1:1:1) phototransistors with PbS quantum dots (QDs) have shown promising features for such sensors, such as reasonable mobility, low leakage current, good photosensitivity, and low-cost fabrication. However, the instability of PbS QD/IGZO phototransistors under an air atmosphere and prolonged storage remain serious concerns. In this article, two concepts to improve the reliability of PbS QD/IGZO phototransistors were implemented. P-type doping in the PbS QD layer through oxidation allows increasing the built-in potential between IGZO and PbS QDs, leading to enhancement in photoinduced electron-hole pair creation. Second, agglomeration and fusion of a PbS QDs layer were controlled via thermal annealing, which facilitated the transport of photocreated carriers. The p-type doping and interconnection of a PbS QD layer can be achieved by deposition and subsequent thermal annealing of gallium oxide (Ga2O3) on PbS QD/IGZO stacks. The resulting Ga2O3/PbS QD/IGZO phototransistors exhibited high-performance switching characteristics under dark conditions. Notably, they showed a remarkable photoresponsivity of 196.69 ± 4.05 A/W and a detectivity of (5.47 ± 1.4) × 1012 Jones even at a long-wavelength illumination of 1550 nm. While the unpassivated PbS/IGZO phototransistor suffered serious degradation in optical performance after 2 weeks of storage, the Ga2O3/PbS QD/IGZO phototransistor demonstrated enhanced stability, maintaining high performance for over 5 weeks. These findings suggest that Ga2O3/PbS QD/IGZO phototransistors offer a feasible approach for the fabrication of large-scale active matrix broadband photosensor arrays, potentially revolutionizing optical sensing in various cutting-edge applications.

15.
Mar Pollut Bull ; 205: 116658, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964192

RESUMO

Offshore coastal marine ranching ecosystems provide habitat for diverse and active bacterial communities. In this study, 16S rRNA gene sequencing and multiple bioinformatics methods were applied to investigate assembly dynamics and relationships in different habitats. The higher number of edges in the water network, more balanced ratio of positive and negative links, and more keystone species included in the co-occurrence network of water. Stochastic processes dominated in shaping gut and sediment community assembly (R2 < 0.5), while water bacterial community assembly were dominated by deterministic processes (R2 > 0.5). Dissimilarity-overlap curve model indicated that the communities in different habitats have general dynamics and interspecific interaction (P < 0.001). Bacterial source-tracking analysis revealed that the gut was more similar to the sediment than the water bacterial communities. In summary, this study provides basic data for the ecological study of marine ranching through the study of bacterial community dynamics.


Assuntos
Bactérias , Ecossistema , RNA Ribossômico 16S , Estações do Ano , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia
16.
Neuroscience ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033991

RESUMO

The research aims to study the therapeutic impact of HEK293-XPack-Olig2 cell-derived exosomes on remyelination of the corpus callosum in a cuprizone-induced demyelinating disease model. A lentiviral vector expressing Olig2 was constructed using XPack technology. The highly abundant Olig2 exosomes (ExoOs) were isolated by centrifugation for subsequent experiments. Western blot, nanoparticle tracking analysis (NTA), and electron microscopy showed no significant difference in particle size and morphology between Exos and ExoOs, and a high level of Olig2 expression could be detected in ExoOs, indicating that exosome modification by XPack technology was successful. The Black Gold/Fluromyelin staining analysis showed that the ExoOs group significantly reduced the demyelination area in the corpus callosum compared to the PBS and Exos groups. Additionally, the PDGFRa/APC staining of the demyelinating region revealed an increase in APC+ oligodendrocytes and a decrease in PDGFRa+ oligodendrocyte progenitor cells (OPCs) in the ExoOs group. Furthermore, there was evident myelin regeneration in the demyelinated areas after ExoOs treatment, with better g-ratio and a higher number of intact myelin compared to the other treatment groups. The level of Sox10 expression in the brain tissue of the ExoOs group were higher compared to those of the PBS and Exos groups. The demyelination process can be significantly slowed down by the XPack-modified exosomes, the differentiation of OPCs promoted, and myelin regeneration accelerated under pathological conditions. This process is presumed to be achieved by changing the expression level of intracellular differentiation-related genes after exosomes transport Olig2 enriched into oligodendrocyte progenitors.

17.
Inorg Chem ; 63(29): 13766-13774, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38965989

RESUMO

Solar photocatalytic H2 production from lignocellulosic biomass has attracted great interest, but it suffers from low photocatalytic efficiency owing to the absence of highly efficient photocatalysts. Herein, we designed and constructed ultrathin MoS2-modified porous TiO2 microspheres (MT) with abundant interface Ti-S bonds as photocatalysts for photocatalytic H2 generation from lignocellulosic biomass. Owing to the accelerated charge transfer related to Ti-S bonds, as well as the abundant active sites for both H2 and ●OH generation, respectively, related to the high exposed edge of MoS2 and the large specific surface area of TiO2, MT photocatalysts demonstrate good performance in the photocatalytic conversion of α-cellulose and lignocellulosic biomass to H2. The highest H2 generation rate of 849 µmol·g-1·h-1 and apparent quantum yield of 4.45% at 380 nm was achieved in α-cellulose aqueous solution for the optimized MT photocatalyst. More importantly, lignocellulosic biomass of corncob, rice hull, bamboo, polar wood chip, and wheat straw were successfully converted to H2 over MT photocatalysts with H2 generation rate of 10, 19, 36, 29, and 8 µmol·g-1·h-1, respectively. This work provides a guiding design approach to develop highly active photocatalysts via interface engineering for solar H2 production from lignocellulosic biomass.

18.
Environ Res ; 260: 119625, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019138

RESUMO

The extensive use of plastic products in food packaging and daily life makes them inevitably enter the treatment process of food waste (FW). Plasticizer as a new pollutant is threatening the dark fermentation of FW. Our study showed that bisphenol A (BPA) at > 250 mg/L had a significant inhibition on hydrogen production from FW by thermophilic dark fermentation. The endogenous ATP content and lactate dehydrogenase (LDH) release showed that high level of BPA not only inhibited the growth of hydrogen-producing consortium, but also led to cell death. In addition, BPA mainly affects the hydrogen-producing consortium by reducing cell membrane fluidity, damaging cell membrane integrity and reducing cell membrane potential, resulting in cell death. This study provides some new insights into the mechanism of the effect of BPA on hydrogen production from FW by thermophilic dark fermentation, and lays the foundation on the utilization of FW.

19.
Bioresour Technol ; 407: 131116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019197

RESUMO

Methane, a potent greenhouse gas, requires sustainable mitigation strategies. Here, the microbial upcycling of methane to phytoene, a valuable colorless carotenoid with applications in the cosmeceutical industry was demonstrated. To achieve this goal, a stepwise metabolic engineering approach was employed in Methylocystis sp. MJC1, a methane-oxidizing bacterium. The incorporation of crtE and crtB genes from Deinococcus radiodurans R1 established the phytoene biosynthetic pathway. This pathway was fine-tuned through promoter optimization, resulting in a phytoene production of 450 µg/L from 37 mmol/L methane. Disrupting the ackA gene reduced a by-product, acetate, by 50 % and increased phytoene production by 56 %. Furthermore, overexpressing the dxs gene boosted phytoene titer 3-fold. The optimized strain produced 15 mg/L phytoene from 2 mol/L methane in fed-batch fermentation, a 4-fold increase in phytoene titer and 4-fold in yield. This demonstrates Methylocystis sp. MJC1's potential for efficient phytoene production and presents a novel approach for greenhouse gas reduction.

20.
PLoS Pathog ; 20(7): e1012379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037956

RESUMO

RNA helicases are involved in the innate immune response against pathogens, including bacteria and viruses; however, their mechanism in the human airway epithelial cells is still not fully understood. Here, we demonstrated that DEAH (Asp-Glu-Ala-His) box polypeptide 35 (DHX35), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family, boosts antiviral innate immunity in human airway epithelial cells. DHX35 knockdown attenuated the production of interferon-ß (IFN-ß), IL6, and CXCL10, whereas DHX35 overexpression increased their production. Upon stimulation, DHX35 was constitutively expressed, but it translocated from the nucleus into the cytosol, where it recognized cytosolic poly(I:C) and poly(dA:dT) via its HELICc domain. Mitochondrial antiviral signaling protein (MAVS) acted as an adaptor for DHX35 and interacted with the HELICc domain of DHX35 using amino acids 360-510. Interestingly, DHX35 interacted with retinoic acid-inducible gene 1 (RIG-I), enhanced the binding affinity of RIG-I with poly(I:C) and poly(dA:dT), and formed a signalsome with MAVS to activate interferon regulatory factor 3 (IRF3), NF-κB-p65, and MAPK signaling pathways. These results indicate that DHX35 not only acted as a cytosolic nucleic acid sensor but also synergized with RIG-I to enhance antiviral immunity in human airway epithelial cells. Our results demonstrate a novel molecular mechanism for DHX35 in RIG-I-mediated innate immunity and provide a novel candidate for drug and vaccine design to control viral infections in the human airway.


Assuntos
Proteína DEAD-box 58 , RNA Helicases DEAD-box , Imunidade Inata , Receptores Imunológicos , Humanos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/imunologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/imunologia , Receptores Imunológicos/metabolismo , Poli I-C/imunologia , Poli I-C/farmacologia , RNA Helicases/metabolismo , RNA Helicases/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA