Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699927

RESUMO

Climate-smart agriculture (CSA) supports the sustainability of crop production and food security, and benefiting soil carbon storage. Despite the critical importance of microorganisms in the carbon cycle, systematic investigations on the influence of CSA on soil microbial necromass carbon and its driving factors are still limited. We evaluated 472 observations from 73 peer-reviewed articles to show that, compared to conventional practice, CSA generally increased soil microbial necromass carbon concentrations by 18.24%. These benefits to soil microbial necromass carbon, as assessed by amino sugar biomarkers, are complex and influenced by a variety of soil, climatic, spatial, and biological factors. Changes in living microbial biomass are the most significant predictor of total, fungal, and bacterial necromass carbon affected by CSA; in 61.9%-67.3% of paired observations, the CSA measures simultaneously increased living microbial biomass and microbial necromass carbon. Land restoration and nutrient management therein largely promoted microbial necromass carbon storage, while cover crop has a minor effect. Additionally, the effects were directly influenced by elevation and mean annual temperature, and indirectly by soil texture and initial organic carbon content. In the optimal scenario, the potential global carbon accrual rate of CSA through microbial necromass is approximately 980 Mt C year-1, assuming organic amendment is included following conservation tillage and appropriate land restoration. In conclusion, our study suggests that increasing soil microbial necromass carbon through CSA provides a vital way of mitigating carbon loss. This emphasizes the invisible yet significant influence of soil microbial anabolic activity on global carbon dynamics.


Assuntos
Agricultura , Carbono , Mudança Climática , Microbiologia do Solo , Solo , Agricultura/métodos , Carbono/análise , Carbono/metabolismo , Solo/química , Biomassa , Ciclo do Carbono , Fungos , Bactérias/metabolismo
2.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581688

RESUMO

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Assuntos
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Flores/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento
3.
J Sci Food Agric ; 104(7): 3865-3882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217341

RESUMO

BACKGROUND: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.) soybean (Glycine Max L. Merr.) relay strip intercropping (MS) An experiment was carried out aiming to examine the effects of nitrogen (N) applications and interspecific distances on root system and soil environment in MS. The two N application levels, referred to as no N application (NN) and conventional N application (CN), were paired with different interspecific distances: 30, 45 and 60 cm (MS30, MS45 and MS60) and 100 cm of monoculture maize and soybean (MM/SS100). RESULTS: The results demonstrated that MS45 increased the distribution of soil aggregates (> 2 mm) near the crop roots and maize soil nutrients status, which increased by 20.3% and 15.6%. Meanwhile, MS reduced soil bulk density, increased soil porosity and improved soil oxygen content. Optimization of the soil environment facilitated root growth. The MS45 achieved a better result on root distribution and morphology than the other configuration and also increased land productivity. CONCLUSION: Relay intercropped soybean with maize in interspecific row spacing of 45 cm, improved soil physicochemical environment, reshaped root architecture and optimized root spatial distribution of crops to achieve greater land productivity. © 2024 Society of Chemical Industry.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Glycine max , Zea mays , Nitrogênio/análise
4.
J Exp Bot ; 75(1): 258-273, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721809

RESUMO

Intercropping improves resource utilization. Under wide-narrow-row maize (Zea mays) intercropping, maize plants are subjected to weak unilateral illumination and exhibit high photosynthetic performance. However, the mechanism regulating photosynthesis under unilateral weak light remains unknown. We investigated the relationship between photosynthesis and sugar metabolism in maize under unilateral weak light. Our results showed that the net photosynthetic rate (Pn) of unshaded leaves increased as the level of shade on the other side increased. On the contrary, the concentration of sucrose and starch and the number of starch granules in the unshaded leaves decreased with increased shading due to the transfer of abundant C into the grains. However, sink loss with ear removal reduced the Pn of unshaded leaves. Intense unilateral shade (40% to 20% normal light), but not mild unilateral shade (60% normal light), reduced grain yield (37.6% to 54.4%, respectively). We further found that in unshaded leaves, Agpsl, Bmy, and Mexl-like expression significantly influenced sucrose and starch metabolism, while Sweet13a and Sut1 expression was crucial for sugar export. In shaded leaves, expression of Sps1, Agpsl, and Sweet13c was crucial for sugar metabolism and export. This study confirmed that unshaded leaves transported photosynthates to the ear, leading to a decrease in sugar concentration. The improvement of photosynthetic performance was associated with altered sugar transport. We propose a narrow-row spacing of 40 cm, which provides appropriate unilateral shade and limits yield reduction.


Assuntos
Fotossíntese , Zea mays , Fotossíntese/fisiologia , Zea mays/fisiologia , Folhas de Planta/fisiologia , Amido , Sacarose
5.
Front Microbiol ; 14: 1258606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901816

RESUMO

Introduction: The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods: We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion: This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 µm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.

6.
BMC Plant Biol ; 23(1): 438, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726682

RESUMO

Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), monoculture peanut (Arachis hypogaea L.) (MP), maize-soybean substitutive relay intercropping (IMS), and maize-peanut substitutive strip intercropping (IMP). N input included without N (N0) and N addition (N1). Results showed that maize's leaf area index was 31.0% and 34.6% higher in IMS and IMP than in MM. The specific leaf weight and chlorophyll a (chl a) of maize were notably higher by 8.0% and 18.8% in IMS, 3.1%, and 18.6% in IMP compared with MM. Finally, N addition resulted in a higher thousand kernels weight of maize in IMS and IMP than that in MM. More dry matter accumulated and partitioned to the grain, maize's averaged partial land equivalent ratio and the net effect were 0.76 and 2.75 t ha-1 in IMS, 0.78 and 2.83 t ha-1 in IMP. The leaf area index and specific leaf weight of intercropped soybean were 16.8% and 26% higher than MS. Although soybean suffers from shade during coexistence, recovered growth strengthens leaf functional traits and increases dry matter accumulation. The averaged partial land equivalent ratio and the net effect of intercropped soybean were 0.76 and 0.47 t ha-1. The leaf area index and specific leaf weight of peanuts in IMP were 69.1% and 14.4% lower than in the MP. The chlorophyll a and chlorophyll b of peanut in MP were 17.0% and 24.4% higher than in IMP. A less dry matter was partitioned to the grain for intercropped peanut. The averaged pLER and NE of intercropped peanuts were 0.26 and -0.55 t ha-1. In conclusion, the strengthened leaf functional traits promote dry matter accumulation, maize-soybean relay intercropping obtained a win-win yield advantage, and maize-peanut strip intercropping achieved a trade-off yield advantage.


Assuntos
Fabaceae , Zea mays , Clorofila A , Verduras , Glycine max , Arachis , Folhas de Planta , Grão Comestível
7.
BMC Plant Biol ; 23(1): 38, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36646997

RESUMO

Applying Biochar (BC) or biofertilizers (BF) are potential approaches to reduce the nitrogen input and mitigate soil degradation in the maize soybean relay strip intercropping system (IS). In 2019 and 2020, a two-factor experiment was carried out to examine the effects of BC and BF on soil productivity and yield production in IS. 4 N input levels (8.4, 22.5, 45 kg, and 67.5 kg ha - 1) referred to as N0, N1, N2, and N3 were paired with various organic treatments, including BC (150 kg ha - 1), BF (300 kg ha - 1), and without organic amendments (CK). The results demonstrated that, despite BF decreasing the biomass and N distribution into grains, BF performed better on improved soybean yield (5.2-8.5%) by increasing the accumulation of soybean biomass (7.2 ~ 11.6%) and N (7.7%). Even though BC and BF have a detrimental effect on soybean nitrogen fixation by reducing nodule number and weight, the values of soybean nitrogenase activity and nitrogen fixation potential in BF were higher than those in BC. Additionally, BF performs better at boosting the soil's nitrogen content and nitrate reductase and urease activity. BF increased the concentration of total N, soil organic matter, Olsen-phosphorus, and alkaline hydrolyzable N in the soil by 13.0, 17.1, 22.0, and 7.4%, respectively, compared to CK. Above all, applying BF combination with N2 (45 kg ha - 1 N) is a feasible strategy to raise crop grain output and keep soil productivity over the long term in IS.


Assuntos
Agricultura , Glycine max , Glycine max/metabolismo , Zea mays/metabolismo , Nitrogênio/metabolismo , Fertilizantes , Solo
8.
Front Plant Sci ; 13: 1031024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457530

RESUMO

Intercropping is a high-yield, resource-efficient planting method. There is a large gap between actual yield and potential yield at farmer's field. Their actual yield of intercropped maize remains unclear under low solar radiation-area, whether this yield can be improved, and if so, what are the underlying mechanism for increasing yield? In the present study, we collected the field management and yield data of intercropping maize by conducting a survey comprising 300 farmer households in 2016-2017. Subsequently, based on surveyed data, we designed an experiment including a high density planting (Dense cultivation and high N fertilization with plough tillage; DC) and normal farmer practice (Common cultivation; CC) to analyze the yield, canopy structure, light interception, photosynthetic parameters, and photosynthetic productivity. Most farmers preferred rotary tillage with a low planting density and N fertilization. Survey data showed that farmer yield ranged between 4-6 Mg ha-1, with highest yield recorded at 10-12 Mg ha-1, suggesting a possibility for yield improvement by improved cropping practices. Results from high density experiment showed that the two-years average yield for DC was 28.8% higher than the CC. Compared to CC, the lower angle between stem and leaf (LA) and higher leaf area index (LAI) in DC resulted in higher light interception in middle canopy and increased the photosynthetic productivity under DC. Moreover, in upper and lower canopies, the average activity of phosphoenolpyruvate (PEP) carboxylase was 70% higher in DC than CC. Briefly, increase in LAI and high Pn improved both light interception and photosynthetic productivity, thereby mediating an increase in the maize yield. Overall, these results indicated that farmer's yields on average can be increased by 2.1 Mg ha-1 by increasing planting density and N fertilization, under plough tillage.

9.
Front Plant Sci ; 13: 1015414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275582

RESUMO

Soybean (Glycine max) is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 µmol m-2 s-1 and 1,200 µmol m-2 s-1 of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; Jiandebaimaodou, Gongdou 2, and Guixia 3 with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).

10.
Front Plant Sci ; 13: 1036170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36798805

RESUMO

Intercropping can increase crop N uptake and reduce carbon emissions. However, the effects of straw incorporation and N reduction on N use and carbon emissions in intercropping are still unclear. We explored the mechanism of N uptake, N use efficiency, and CO2 emissions in the wheat-maize-soybean relay strip intercropping system. A two-year field experiment was conducted with two straw managements, i.e., wheat straw incorporation (SI) and straw removal (SR), and four N application levels of soybean, i.e., 60 (N60), 30 (N30), 15 (N15), and 0 kg N ha-1 (N0). We assessed soil properties, CO2 emissions, and characteristics of roots, nodules, and aboveground N uptake of intercropped soybean. Results showed that geometry mean diameter of aggregate, soil porosity, soil total N, and soil urease activity were notably greater in SI than in SR. N input reduced from N60 to N30 did not significantly affect the soil total N content and urease activity in SI. The root length, root surface area, root volume, root biomass, root bleeding intensity, and inorganic N content of bleeding sap were greater in SI than in SR. In the SI, although the root length and surface area peaked at N60, the root biomass and inorganic N content of bleeding sap were insignificant between N60 and N30. The nodule number, nodule dry weight, nodule nitrogenase activity, and nodule nitrogen fixation potential in SI were notably increased compared with SR. The nodule nitrogen fixation potential in SI notably increased with the decrease of N input at the R3 stage, but it peaked in N30 at the R5 stage. On average, the aboveground N uptake and nitrogen recovery efficiency (RE) was notably higher by 43.7% and 76.8% in SI than in SR. SI+N30 achieved the greatest aboveground N uptake and RE. The CO2 emission and accumulated CO2 emission were notably greater in SI than in SR, and the accumulated CO2 emission of SI was the lowest with N30 input. In conclusion, SI+N30 promoted N uptake and utilization efficiency with reduced CO2 emissions during the soybean cropping season. It provides a potential strategy for sustainable agricultural development in intercropping systems.

11.
Front Plant Sci ; 12: 724909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552608

RESUMO

Water, nutrient, light, and interspecific facilitation regulation of soil physicochemical properties and root morphology modulate nitrogen (N) uptake in cereal and legume intercropping systems. However, maize root morphological plasticity and N uptake capability response to gravity in the intercropping system remains to be determined. In this study, maize was grown under 20 cm (I20), 40 cm (I40), and 60 cm (I60) of narrow row spacing in an intercropping system (maize-soybean strip relay intercropping) and equal row spacing of monoculture (M) in a 2-year field experiment. As a supplementary for the field experiment, maize root barrier and plant inclination experiments were conducted. Plant inclination, brace root morphology, N uptake, indole-3-acetic acid (IAA) level, IAA synthesis genes, and grain yield were assessed. The result showed that the plant inclination increased with decreasing narrow row spacing in intercropping system. Also, the brace unilateral root growth ratio (BURR) increased with increasing plant inclination in intercropping treatments. The plant inclination experiment showed the BURR achieved 94% after inclination at 45°. BURR tended to be positively correlated (p = 0.00) with plant inclination. Thus, gravity (plant inclination) causes brace unilateral root growth. The IAA concentration of stem nodes in the wide row increased with increasing plant inclination, while the IAA accumulation decreased in the narrow row. The Zmvt2 and ZM2G141383 genes (associated with IAA biosynthesis) were highly expressed in a wide row. There was a strong correlation (p = 0.03) between the IAA concentration of wide row and the BURR. Therefore, gravity regulates the IAA level, which affects BURR. In addition, the brace root number, volume, and surface area were decreased when BURR was increased. Subsequently, the leaf N, cob N, and kernel N accumulation were reduced. These organs N and grain yield in I60 were not significantly different as compared to the control treatment. The excessive brace unilateral root growth was not conducive to N uptake and increased yield. Our results suggest that gravity is essential in regulating root morphology plasticity by regulating IAA levels and decreasing N uptake capacity. Furthermore, these results indicate that plant inclination can regulate root phenotype and N uptake of maize and by adjusting the spacing of narrow maize row, we can improve the N uptake and yield of the maize-soybean strip relay-intercropping system.

12.
PeerJ ; 9: e11658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221735

RESUMO

Maize's nitrogen (N) uptake can be improved through maize-legume intercropping. N uptake mechanisms require further study to better understand how legumes affect root growth and to determine maize's absorptive capacity in maize-legume intercropping. We conducted a two-year field experiment with two N treatments (zero N (N0) and conventional N (N1)) and three planting patterns (monoculture maize (Zea mays L.) (MM), maize-soybean (Glycine max L. Merr.) strip intercropping (IMS), and maize-peanut (Arachis hypogaea L.) strip intercropping (IMP)). We sought to understand maize's N uptake mechanisms by investigating root growth and distribution, root uptake capacity, antioxidant enzyme activity, and the antioxidant content in different maize-legume strip intercropping systems. Our results showed that on average, the N uptake of maize was significantly greater by 52.5% in IMS and by 62.4% in IMP than that in MM. The average agronomic efficiency (AE) of maize was increased by 110.5 % in IMS and by 163.4 % in IMP, compared to MM. The apparent recovery efficiency (RE) of maize was increased by 22.3% in IMS. The roots of intercropped maize were extended into soybean and peanut stands underneath the space and even between the inter-rows of legume, resulting in significantly increased root surface area density (RSAD) and total root biomass. The root-bleeding sap intensity of maize was significantly increased by 22.7-49.3% in IMS and 37.9-66.7% in IMP, compared with the MM. The nitrate-N content of maize bleeding sap was significantly greater in IMS and IMP than in MM during the 2018 crop season. The glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in the root significantly increased in IMS and IMP compared to MM. Strip intercropping using legumes increases maize's aboveground N uptake by promoting root growth and spatial distribution, delaying root senescence, and strengthening root uptake capacity.

13.
Plant Cell Environ ; 44(8): 2536-2550, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34118074

RESUMO

Mildew severely reduces soybean yield and quality, and pods are the first line of defence against pathogens. Maize-soybean intercropping (MSI) reduces mildew incidence on soybean pods; however, the mechanism remains unclear. Changing light (CL) from maize shading is the most important environmental feature in MSI. We hypothesized that CL affects isoflavone accumulation in soybean pods, affecting their disease resistance. In the present study, shading treatments were applied to soybean plants during different developmental stages according to various CL environments under MSI. Chlorophyll fluorescence imaging (CFI) and classical evaluation methods confirmed that CL, especially vegetative stage shading (VS), enhanced pod resistance to mildew. Further metabolomic analyses and exogenous jasmonic acid (JA) and biosynthesis inhibitor experiments revealed the important relationship between JA and isoflavone biosynthesis, which had a synergistic effect on the enhanced resistance of CL-treated pods to mildew. VS promoted the biosynthesis and accumulation of constitutive isoflavones upstream of the isoflavone pathway, such as aglycones and glycosides, in soybean pods. When mildew infects pods, endogenous JA signalling stimulated the biosynthesis of downstream inducible malonyl isoflavone (MIF) and glyceollin to improve pod resistance.


Assuntos
Glycine max/metabolismo , Glycine max/microbiologia , Isoflavonas/biossíntese , Doenças das Plantas/microbiologia , Acetatos/farmacologia , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/fisiologia , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Isoflavonas/análise , Luz , Inibidores de Lipoxigenase/farmacologia , Metabolômica/métodos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Pirazóis/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Soja/genética , Glycine max/efeitos dos fármacos , Glycine max/genética , Espectrometria de Massas em Tandem
14.
Front Plant Sci ; 12: 818327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069671

RESUMO

Insufficient and unbalanced biomass supply inhibited soybean [Glycine max (L.) Merr.] yield formation in the maize-soybean relay strip intercropping (IS) and monoculture soybean (SS). A field experiment was conducted to explore the soybean yield increase mechanism of DA-6 in IS and SS treatments. In this 2-year experiment, compact maize "Denghai 605" and shade-tolerant soybean "Nandou 25" were selected as cultivated materials. DA-6 with four concentrations, i.e., 0 mg/L (CK), 40 mg/L (D40), 60 mg/L (D60), and 80 mg/L (D80), were sprayed on soybean leaves at the beginning of flowering stage of soybean. Results showed that DA-6 treatments significantly (p < 0.05) increased soybean grain yield, and the yield increase ratio was higher in IS than SS. The leaf area index values and net photosynthesis rate of IS peaked at D60 and were increased by 32.2-49.3% and 24.1-27.2% compared with the corresponding CK. Similarly, DA-6 treatments increased the aboveground dry matter and the amount of soybean dry matter accumulation from the R1 stage to the R8 stage (VDMT) and highest at D60 both in IS and SS. D60 increased the VDMT by 29.0-47.1% in IS and 20.7-29.2% in SS. The TR G at D60 ranged 72.4-77.6% in IS and 61.4-62.5% in SS. The MDA content at D60 treatment was decreased by 38.3% in IS and 25.8% in SS. The active grain-filling day in IS was about 7 days longer than in SS. In D60 treatment, the Vmean and Vmax increased by 6.5% and 6.5% in IS and 5.7% and 4.3% in SS compared with the corresponding CK. Although the pod number and hundred-grain weight were significantly (p < 0.05) increased by DA-6 treatments, the grains per pod were maintained stable. The pod number and hundred-grain weight were increased by 30.1-36.8% and 4.5-6.7% in IS and 6.3-13% and 3.6-5.6% in SS. Thus, the grain yield at D60 was increased by 36.7-38.4% in IS and 21.7-26.6% in SS. DA-6 treatments significantly (p < 0.05) increased soybean grain yield and peaked D60 treatments both in IS and SS.

15.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759776

RESUMO

The border row crop in strip intercropped maize is often exposed to heterogeneous light conditions, resulting in increased photosynthesis and yield decreased. Previous studies have focused on photosynthetic productivity, whereas carbon allocation could also be one of the major causes of decreased yield. However, carbon distribution remains unclear in partially shaded conditions. In the present study, we applied heterogeneous light conditions (T), and one side of plants was shaded (T-30%), keeping the other side fully exposed to light (T-100%), as compared to control plants that were exposed entirely to full-light (CK). Dry weight, carbon assimilation, 13C abundance, and transport tissue structure were analyzed to clarify the carbon distribution in partial shading of plants. T caused a marked decline in dry weight and harvest index (HI), whereas dry weight in unshaded and shaded leaves did not differ. Net photosynthesis rate (Pn), the activity of sucrose phosphate synthase enzymes (SPS), and sucrose concentration increased in unshaded leaves. Appropriately, 5.7% of the 13C from unshaded leaves was transferred to shaded leaves. Furthermore, plasmodesma density in the unshaded (T-100%) and shaded (T-30%) leaves in T was not significantly different but was lower than that of CK. Similarly, the vascular bundle total area of T was decreased. 13C transfer from unshaded leaves to ear in T was decreased by 18.0% compared with that in CK. Moreover, 13C and sucrose concentration of stem in T were higher than those in CK. Our results suggested that, under heterogeneous light, shaded leaves as a sink imported the carbohydrates from the unshaded leaves. Ear and shaded leaf competed for carbohydrates, and were not conducive to tissue structure of sucrose transport, resulting in a decrease in the carbon proportion in the ear, harvest index, and ear weight.

16.
Plants (Basel) ; 9(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722147

RESUMO

Seed germination is one of the most important stages during plant life cycle, and DOG1 (Delay of germination1) plays a pivotal regulatory role in seed dormancy and germination. In this study, we have identified the DOG1-Like (DOG1L) family in soybean (Glycine max), a staple oil crop worldwide, and investigated their chromosomal distribution, structure and expression patterns. The results showed that the GmDOG1L family is composed of 40 members, which can be divided into six subgroups, according to their evolutionary relationship with other known DOG1-Like genes. These GmDOG1Ls are distributed on 18 of 20 chromosomes in the soybean genome and the number of exons for all the 40 GmDOG1Ls varied greatly. Members of the different subgroups possess a similar motif structure composition. qRT-PCR assay showed that the expression patterns of different GmDOG1Ls were significantly altered in various tissues, and some GmDOG1Ls expressed primarily in soybean seeds. Gibberellic acid (GA) remarkably inhibited the expression of most of GmDOG1Ls, whereas Abscisic acid (ABA) inhibited some of the GmDOG1Ls expression while promoting others. It is speculated that some GmDOG1Ls regulate seed dormancy and germination by directly or indirectly relating to ABA and GA pathways, with complex interaction networks. This study provides an important theoretical basis for further investigation about the regulatory roles of GmDOG1L family on soybean seed germination.

17.
Pathogens ; 9(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630289

RESUMO

Maize/soybean relay strip intercropping has been widely practiced in Southwest China due to its high productivity and effective application of agricultural resources; however, several seedborne diseases such as seedling blight, pod and seed decay are frequently observed causing severe yield loss and low seed quality. So far, the population and pathogenicity of the seedborne fungi associated with intercropped soybean remain unexplored. In this study, seeds of 12 soybean cultivars screened for intercropping were collected from three growing regions in Sichuan Province of Southwest China, and the seedborne fungi were isolated from the surface-sterilized seeds. Based on sequence analysis of ribosomal DNA internal transcribed spacer (rDNA ITS), 148 isolates were identified into 13 fungal genera, among which Fusarium covered 55.0% as the biggest population followed by Colletotrichum. Furthermore, Fusarium isolates were classified into five distinct species comprising F. fujikuroi, F. proliferatum, F. verticillioides, F. asiaticum and F. incarnatum through sequence analysis of translation elongation factor 1 alpha (EF-1α) and DNA-directed RNA ploymerase II second largest subunit (RPB2). Among them, F. fujikuroi accounted for 51.22% (42/82) and was isolated from 91.7% (11/12) soybean varieties. Pathogenicity assay showed that five Fusarium species were able to infect the seeds of soybean cultivar "Nandou12" and caused water-soaked or rot symptoms, while F. fujikuroi and F. asiaticum had much higher aggressiveness than other species with significant reductions of seed fresh weight and germination percentage. Accordingly, this study indicates that Fusarium species are the dominant seedborne fungi in the intercropped soybean in Sichuan, China, and this provides some useful references for the effective management of seedborne fungal diseases as well as soybean resistance breeding in maize/soybean relay strip intercropping.

18.
Physiol Plant ; 170(3): 345-356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32588443

RESUMO

Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3 , GA7 , indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.


Assuntos
Arabidopsis , Giberelinas , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Hipocótilo , Ácidos Indolacéticos , Luz , Glycine max/genética , Temperatura
19.
Funct Plant Biol ; 47(9): 815-824, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553087

RESUMO

Melatonin (MT) regulates several physiological activities in plants. However, information on how MT regulates soybean growth under low-temperature (LT) stress is lacking. To better understand how MT promotes plant growth and development under LT stress, we designed this study to evaluate the role of MT pretreatment on soybean seedlings exposed to LT stress. Our results showed that LT stress increased oxidative damage by increasing reactive oxygen species (ROS) accumulation, which affected the growth and development of soybean seedlings. However, the application of 5 µmol L-1 MT significantly decreased the oxidative damage by increasing plant mineral element concentrations and the transcript abundance of antioxidant related genes, which enhanced the decrease in ROS accumulation. These results collectively suggest the involvement of MT in improving LT stress tolerance of soybean seedlings by mediating plant mineral elements and the expression of genes involved in the antioxidant pathway.


Assuntos
Melatonina , Antioxidantes , Melatonina/farmacologia , Minerais , Plântula/genética , Glycine max/genética , Temperatura
20.
Funct Plant Biol ; 47(7): 592-610, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375994

RESUMO

In response to shading, plant leaves acclimate through a range of morphological, physiological and biochemical changes. Plants produce a myriad of structurally and functionally diverse metabolites that play many important roles in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. To develop a clearer understanding of the effects of shade on soybeans at different growth stages, a comprehensive, three-year, stage-wise study was conducted. Leaf area, leaf thickness, stem diameter, chlorophyll contents, photosynthetic characteristics and other morphological and physiological features were measured along with biochemical assays for antioxidants such as superoxide dismutase, peroxidase and caralase and yield attributes of different soybean genotypes (Guixia 2, Nandou12, Nandong Kang-22, E61 and C103) under shading nets with 50% light transmittance. It was observed that early shading (VER1 and VER2) significantly decreased main stem length and main stem length/stem diameter. Later shading (R1R8 and R2R8) had significant effects on morphological characters such as branch number and pod height. In Nandou 12, the protein contents in plants shaded at R1R8, R2R8 and R5R8 were 9.20, 8.98 and 6.23% higher than in plants grown under normal light levels (CK), respectively, and the crude fat content was 9.31, 10.74 and 4.28% lower. The influence of shading in the later period on anatomy was greater than that in the earlier period. Shading reduced the light saturation point (LSP), the light compensation point (LCP) and the maximum photosynthetic rate (Pnmax), and increased the apparent quantum yield (AQ). Shading also increased the antioxidant enzyme activity in the plants, and this increase was greater with early shading than late. The variability in the chlorophyll (a + b) content and the chlorophyll a/b ratio in R2 stage plants was less than in R5 stage (VER5) plants. Similarly, the activity of antioxidant enzymes in R2 after returning the plants to normal light levels (VER2) was lower than in R5 after relighting (VER5). Compared with later shading, the early shading had a greater effect on the photosynthetic and related characteristics. The longer the shading time, the greater the adverse effects and the less able the plants' were to recover. The data collected in this study contribute to an understanding of the physiological mechanisms underlying the early and late growth stage acclimation strategies in different soybean genotypes subjected to shade stress.


Assuntos
Glycine max , Luz , Aclimatação , Clorofila A , Genótipo , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA