Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 77: 103426, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38678980

RESUMO

GATA6 is expressed during early embryogenesis and localizes to endoderm- and mesoderm-derived tissues during later embryogenesis. Here, we established a human induced pluripotent stem cell (hiPSC) line expressing EGFP under GATA6 gene. EGFP coding sequence was introduced into the C-terminus of GATA6 in KSCBi017-A hiPSCs through homologous recombination using CRISPR/Cas9 system. The successfully edited line, KSCBi017-A-1, was selected and confirmed by sequencing. The line had a normal karyotype and exhibited potential to differentiate into three germ layers while it expressed EGFP upon endoderm induction. KSCBi017-A-1 cells can be used to monitor the expression of GATA6 during differentiation. This cell line is available from Korea National Stem Cell Bank.

2.
Sci Rep ; 13(1): 5683, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029196

RESUMO

Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.


Assuntos
Células-Tronco Pluripotentes , Transdução de Sinais , Humanos , Retroalimentação , Diferenciação Celular , Morte Celular , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
3.
Stem Cell Res ; 63: 102841, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700632

RESUMO

A human induced pluripotent cell (hiPSC) line, KSCBi012-A, was generated from a 40-year-old male individual using non-integrating episomal vectors expressing reprogramming factors. The generated hiPSCs were integration-free, expressed pluripotency markers, exhibited the potential for differentiation into three germ layers in vivo, and maintained the normal karyotype. This cell line can be used as a control for a disease model and is available from Korea National Stem Cell Bank.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Células Epiteliais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Plasmídeos
4.
Biochem Biophys Res Commun ; 521(2): 375-382, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668921

RESUMO

Assessment of differentiation potential is a basic requirement to obtain qualified human pluripotent stem cells (hPSCs). Here, we report a simple differentiation method using fetal bovine serum (FBS) to estimate differentiation potential and propensity of hPSCs. PluriTest using RNA-sequencing showed that cells differentiated after treatment with 5% FBS. Expression patterns of three germ layer markers revealed that cells cultured in Knockout Serum Replacement-containing medium (KSR) with mouse feeder cells had higher differentiation potential than cells cultured in a chemically defined medium (E8) with recombinant matrix proteins, especially into the mesoderm and endoderm lineages. Analysis of differentially expressed genes between KSR and E8 identified DUSP6 as a marker for where cells had been cultured. Expression of DUSP6 correlated with FGF-ERK signaling activity. Fine-tuning of FGF-ERK signaling activity to a range that can shut down DUSP6 transcription but sustain NANOG transcription partially increased the differentiation potential. Our data suggest that differentiation with 5% FBS is good to estimate differentiation potential and propensity at the early stage, and that DUSP6 is an excellent marker to monitor ERK signaling activity.


Assuntos
Diferenciação Celular , Fosfatase 6 de Especificidade Dupla/análise , Sistema de Sinalização das MAP Quinases , Células-Tronco Pluripotentes/metabolismo , Soro , Animais , Biomarcadores/análise , Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Células Alimentadoras , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia
5.
Stem Cell Res ; 9(2): 101-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22683799

RESUMO

Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Neurônios/citologia , Epitélio Pigmentado da Retina/citologia , Esferoides Celulares/citologia , Animais , Bovinos , Agregação Celular , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Proteínas do Olho/metabolismo , Humanos , Fatores de Crescimento Neural/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Neurônios/metabolismo , Fagocitose , Reprodutibilidade dos Testes , Serpinas/metabolismo , Esferoides Celulares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biochem Biophys Res Commun ; 366(1): 129-34, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18060872

RESUMO

The major obstacle in cell therapy of diabetes mellitus is the limited source of insulin-producing beta cells. Very recently, it was shown that a five-stage protocol recapitulating in vivo pancreatic organogenesis induced pancreatic beta cells in vitro; however, this protocol is specific to certain cell lines and shows much line-to-line variation in differentiation efficacy. Here, we modified the five-stage protocol for the human embryonic stem cell line SNUhES3 by the addition of betacellulin and nicotinamide. We reproduced in vivo pancreatic islet differentiation by directing the cells through stages that resembled in vivo pancreatic organogenesis. The addition of betacellulin and nicotinamide sustained PDX1 expression and induced beta-cell differentiation. C-peptide-a genuine marker of de novo insulin production-was identified in the differentiated cells, although the insulin mRNA content was very low. Further studies are necessary to develop more efficient and universal protocols for beta-cell differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Niacinamida/administração & dosagem , Transativadores/metabolismo , Betacelulina , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA