Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2733-2746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923703

RESUMO

BACKGROUND: Exercise stimulates the activation of muscle satellite cells, which facilitate the maintenance of stem cells and their myogenic conversion during muscle regeneration. However, the underlying mechanism is not yet fully understood. This study shows that the transcriptional co-activator with PDZ-binding motif (TAZ) stimulates muscle regeneration via satellite cell activation. METHODS: Tazf/f mice were crossed with the paired box gene 7 (Pax7)creERT2 mice to generate muscle satellite cell-specific TAZ knockout (sKO) mice. Mice were trained in an endurance exercise programme for 4 weeks. Regenerated muscles were harvested and analysed by haematoxylin and eosin staining. Muscle tissues were also analysed by immunofluorescence staining, immunoblot analysis and quantitative reverse transcription PCR (qRT-PCR). For the in vitro study, muscle satellite cells from wild-type and sKO mice were isolated and analysed. Mitochondrial DNA was quantified by qRT-PCR using primers that amplify the cyclooxygenase-2 region of mitochondrial DNA. Quiescent and activated satellite cells were stained with MitoTracker Red CMXRos to analyse mitochondria. To study the p38 mitogen-activated protein kinase (MAPK)-TAZ signalling axis, p38 MAPK was activated by introducing the MAPK kinase 6 plasmid into satellite cells and also inhibited by treatment with the p38 MAPK inhibitor, SB203580. RESULTS: TAZ interacts with Pax7 to induce Myf5 expression and stimulates mammalian target of rapamycin signalling for satellite cell activation. In sKO mice, TAZ depletion reduces muscle satellite cell number by 38% (0.29 ± 0.073 vs. 0.18 ± 0.034, P = 0.0082) and muscle regeneration. After muscle injury, TAZ levels (2.59-fold, P < 0.0001) increase in committed cells compared to self-renewing cells during asymmetric satellite cell division. Mechanistically, the polarity protein Pard3 induces TAZ (2.01-fold, P = 0.008) through p38 MAPK, demonstrating that the p38 MAPK-TAZ axis is important for muscle regeneration. Physiologically, endurance exercise training induces muscle satellite cell activation and increases muscle fibre diameter (1.33-fold, 43.21 ± 23.59 vs. 57.68 ± 23.26 µm, P = 0.0004) with increased TAZ levels (1.76-fold, P = 0.017). However, sKO mice had a 39% reduction in muscle satellite cell number (0.20 ± 0.03 vs. 0.12 ± 0.02, P = 0.0013) and 24% reduction in muscle fibre diameter compared to wild-type mice (61.07 ± 23.33 vs. 46.60 ± 24.29 µm, P = 0.0006). CONCLUSIONS: Our results demonstrate a novel mechanism of TAZ-induced satellite cell activation after muscle injury and exercise, suggesting that activation of TAZ in satellite cells may ameliorate the muscle ageing phenotype and may be an important target protein for the drug development in sarcopenia.


Assuntos
Células Satélites de Músculo Esquelético , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , DNA Mitocondrial/metabolismo , Mamíferos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
2.
Theranostics ; 13(12): 4182-4196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554269

RESUMO

Background: Endothelial dysfunction is a systemic disorder and is involved in the pathogenesis of several human diseases. Hemodynamic shear stress plays an important role in vascular homeostasis including nitric oxide (NO) production. Impairment of NO production in endothelial cells stimulates the capillarization of liver sinusoidal endothelial cells, followed by hepatic stellate cell activation, inducing liver fibrosis. However, the detailed mechanism underlying NO production is not well understood. In hepatocytes, transcriptional co-activator with PDZ-binding motif (TAZ) has been reported to be involved in liver fibrosis. However, the role of endothelial TAZ in liver fibrosis has not been investigated. In this study, we uncovered the role TAZ in endothelial cell NO production, and its subsequent effects on liver fibrosis. Methods: TAZ-floxed mice were crossed with Tie2-cre transgenic mice, to generate endothelium-specific TAZ-knockout (eKO) mice. To induce liver damage, a 3,5-diethoxycarboncyl-1,4-dihydrocollidine, methionine-choline-deficient diet, or partial hepatectomy was applied. Liver fibrosis and endothelial dysfunction were analyzed in wild-type and eKO mice after liver damage. In addition, liver sinusoidal endothelial cell (LSEC) was used for in vitro assays of protein and mRNA levels. To study transcriptional regulation, chromatin immunoprecipitation and luciferase reporter assays were performed. Results: In liver of eKO mice, LSEC capillarization was observed, evidenced by loss of fenestrae and decreased LSEC-specific marker gene expression. LSEC capillarization of eKO mouse is caused by downregulation of endothelial nitric oxide synthase expression and subsequent decrease in NO concentration, which is transcriptionally regulated by TAZ-KLF2 binding to Nos3 promoter. Diminished NO concentration by TAZ knockout in endothelium accelerates liver fibrosis induced by liver damages. Conclusions: Endothelial TAZ inhibits damage-induced liver fibrosis via NO production. This highlights an unappreciated role of TAZ in vascular health and liver diseases.


Assuntos
Hepatopatias , Óxido Nítrico , Camundongos , Humanos , Animais , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Fígado/metabolismo , Endotélio/metabolismo
3.
J Cell Physiol ; 237(12): 4504-4516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250997

RESUMO

Chronic liver injury follows inflammation and liver fibrosis; however, the molecular mechanism underlying fibrosis has not been fully elucidated. In this study, the role of ductal WW domain-containing transcription regulator 1 (WWTR1)/transcriptional coactivator with PDZ-binding motif (TAZ) was investigated after liver injury. Ductal TAZ-knockout (DKO) mice showed decreased liver fibrosis following a Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) diet compared to wild-type (WT) mice, as evidenced by decreased expression levels of fibrosis inducers, including connective tissue growth factor (Ctgf)/cellular communication network factor 2 (CCN2), cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and transforming growth factor beta 1 (Tgfb1), in DKO mice. Similarly, TAZ-knockout (KO) cholangiocyte organoids showed decreased expression of fibrosis inducers. Additionally, the culture supernatant of TAZ-KO cholangiocyte organoids decreased the fibrogenic gene expression in liver stellate cells. Further studies revealed that prominin 1 (PROM1/CD133) stimulated TAZ for fibrosis. After the administration of DDC diet, fibrosis was decreased in CD133-KO (CD133-KO) mice compared to that in WT mice. Similarly, CD133-KO cholangiocyte organoids showed decreased Ctgf, Cyr61, and Tgfb1 expression levels compared to WT cholangiocyte organoids. Mechanistically, CD133 stabilized TAZ via Src activation. Inhibition of Src decreased TAZ levels. Similarly, CD133-knockdown HCT116 cells showed decreased TAZ levels, but reintroduction of active Src recovered the TAZ levels. Taken together, our results suggest that TAZ facilitates liver fibrosis after a DDC diet via the CD133-Src-TAZ axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença Hepática Crônica Induzida por Substâncias e Drogas , Transativadores , Animais , Camundongos , Dieta , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Cirrose Hepática/induzido quimicamente , Camundongos Knockout , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas pp60(c-src) , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Nat Commun ; 13(1): 653, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115527

RESUMO

Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias Musculares/genética , Proteínas Mitocondriais/genética , Biogênese de Organelas , Condicionamento Físico Animal , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
5.
Biochem Biophys Res Commun ; 524(1): 242-248, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983436

RESUMO

Ultraviolet (UV) irradiation induces the proliferation and differentiation of keratinocytes in the basal layer of the epidermis, which increases epidermal thickness in skin regeneration. However, the mechanism underlying this phenomenon is not yet known in detail. In this study, we aimed to demonstrate that the transcriptional coactivator with PDZ-binding motif (TAZ) stimulates epidermal regeneration by increasing keratinocyte proliferation. During epidermal regeneration, TAZ is localized in the nucleus of keratinocytes of the basal layer and stimulates epidermal growth factor receptor (EGFR) signaling. TAZ depletion in keratinocytes decreased EGFR signaling activation, which delays epidermal regeneration. Interestingly, TAZ stimulated the transcription of amphiregulin (AREG), a ligand of EGFR, through TEAD-mediated transcriptional activation. Together, these results show that TAZ stimulates EGFR signaling through AREG induction, suggesting that it plays an important role in epidermal regeneration.


Assuntos
Anfirregulina/genética , Epiderme/fisiologia , Regeneração , Transativadores/metabolismo , Transcrição Gênica , Raios Ultravioleta , Proteínas Adaptadoras de Transdução de Sinal , Anfirregulina/metabolismo , Animais , Proliferação de Células/efeitos da radiação , Epiderme/efeitos da radiação , Receptores ErbB/metabolismo , Deleção de Genes , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA