Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
PLoS One ; 19(5): e0303106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691566

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0083734.].

2.
J Gastrointest Surg ; 28(1): 57-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38353075

RESUMO

BACKGROUND: High-risk patients undergoing abdominoperineal resection and pelvic exenteration may benefit from immediate flap reconstruction. However, there is currently no consensus on the ideal flap choice or patient for whom this is necessary. This study aimed to evaluate the long-term outcomes of using pedicled gracilis flaps for pelvic reconstruction and to analyze predictors of postoperative complications. METHODS: This was a retrospective review of a single reconstructive surgeon's cases between January 2012 and June 2021 identifying patients who underwent perineal reconstruction secondary to oncologic resection. Preoperative and outcome variables were collected and analyzed to determine the risk of developing minor and major wound complications. RESULTS: A total of 101 patients were included in the study with most patients (n = 88) undergoing unilateral gracilis flap reconstruction after oncologic resection. The mean follow-up period was 75 months. Of 101 patients, 8 (7.9%) developed early major complications, and an additional 13 (12.9%) developed late major complications. Minor complications developed in 33 patients (32.7%) with most cases being minor wound breakdown requiring local wound care. Most patients (n = 92, 91.1%) did not develop donor site complications. Anal cancer was significantly associated with early major complications, whereas younger age and elevated body mass index were significant predictors of developing minor wound complications. CONCLUSIONS: This study builds on our previous work that demonstrated the long-term success rate of gracilis flap reconstruction after large pelvic oncologic resections. A few patients developed donor site complications, and perineal complications were usually easily managed with local wound care, thus making the gracilis flap an attractive alternative to abdominal-based flaps.


Assuntos
Neoplasias do Ânus , Procedimentos de Cirurgia Plástica , Neoplasias Retais , Humanos , Retalhos Cirúrgicos/cirurgia , Procedimentos de Cirurgia Plástica/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Pelve , Neoplasias do Ânus/cirurgia , Estudos Retrospectivos , Períneo/cirurgia , Neoplasias Retais/cirurgia
3.
J Surg Res ; 296: 273-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295715

RESUMO

INTRODUCTION: Dynamic cell-cell interactions shape the tumor microenvironment to regulate tumor growth and invasiveness. Myofibroblasts are gastrointestinal stromal cells that are upregulated in the setting of colorectal cancer (CRC) and may play an important role in tumor-stromal cell communication. Angiogenin is a 14-kDa ribonuclease that regulates myofibroblast function and has been implicated in myofibroblast-CRC cell communication in mouse models. However, its role in human patients has not been well established. METHODS: Open access, annotated single-cell RNA sequencing data of paired normal human colon and CRC tissue were available in the National Center for Biotechnology Information Gene Expression Omnibus Database. We supplemented and verified these data by analyzing scRNA-seq data from an independent set of paired normal human colon and CRC tissue. CellChat was used to quantitatively infer biologically meaningful cell-cell communication networks from scRNA-seq data. PLXNB2 and α-2 actin (ACTA2) are cell surface angiogenin receptors that regulate angiogenin signaling. Ligand-receptor interactions involving angiogenin, PLXNB2, and ACTA2 were analyzed between cell populations in each sample. RESULTS: We found no difference in overall angiogenin expression comparing normal colon and CRC tissue. In normal colon tissue, myofibroblasts do not express angiogenin or the PLXNB2 receptor. In the presence of CRC, there was a striking increase in the number of myofibroblast cells within the surrounding stroma. CRC-associated myofibroblasts were characterized by a significant upregulation of both angiogenin and PLXNB2 receptor expression (P < 0.05), while no difference was seen in ACTA2. CRC cells not only use angiogenin for autocrine signaling but also communicate with myofibroblasts via the PLXNB2 receptor. CONCLUSIONS: Compared to normal human colon tissue, CRC tissue is associated with an enrichment of myofibroblasts that exhibit upregulated expression of angiogenin and the angiogenin receptor PLXNB2. CRC cells engage in autocrine signaling via angiogenin and paracrine signaling with myofibroblasts via PLXNB2. Angiogenin appears to be directly involved in tumor-stromal cell communication in human CRC tissue and may play an important role in disease progression.


Assuntos
Neoplasias Colorretais , Miofibroblastos , Ribonuclease Pancreático , Animais , Humanos , Camundongos , Comunicação Celular , Neoplasias Colorretais/patologia , Transdução de Sinais , Microambiente Tumoral
4.
Tissue Eng Regen Med ; 21(2): 341-351, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856071

RESUMO

BACKGROUND: Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs) based scaffold-free fibrocartilage constructs and investigate in vivo bone-tendon interface (BTI) healing efficacy in a rat anterior cruciate ligament (ACL) reconstruction model. METHODS: Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and cultured in differentiation media including  TGF-ß-only, CTGF-only, and TGF-ß + CTGF. Collagenase treatment on tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and collagenase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in a rat ACL reconstruction model. RESULTS: Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-ß and CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the Control group without affecting tensile strength. The failure stress was highest in the Col + D + group (22.494 ± 13.74 Kpa) compared to other groups at integration analysis in vitro. The ACL Recon + FC group exhibited a significant 88% increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period. CONCLUSION: Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibrocartilaginous BTI healing in ACL reconstruction.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Células-Tronco Mesenquimais , Ratos , Animais , Tendões , Fibrocartilagem , Fator de Crescimento Transformador beta , Colagenases
5.
Tissue Eng Regen Med ; 21(2): 209-221, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837499

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS: CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS: CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION: Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.


Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Anti-Inflamatórios , Cartilagem/metabolismo
6.
Adv Healthc Mater ; 13(4): e2302508, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37906084

RESUMO

Medical imaging and 3D bioprinting can be used to create patient-specific bone scaffolds with complex shapes and controlled inner architectures. This study investigated the effectiveness of a biomimetic approach to scaffold design by employing geometric control. The biomimetic scaffold with a dense external layer showed improved bone regeneration compared to the control scaffold. New bone filled the defected region in the biomimetic scaffolds, while the control scaffolds only presented new bone at the boundary. Histological examination also shows effective bone regeneration in the biomimetic scaffolds, while fibrotic tissue ingrowth is observed in the control scaffolds. These findings suggest that the biomimetic bone scaffold, designed to minimize competition for fibrotic tissue formation in the bony defect, can enhance bone regeneration. This study underscores the notion that patient-specific anatomy can be accurately translated into a 3D bioprinting strategy through medical imaging, leading to the fabrication of constructs with significant clinical relevance.


Assuntos
Bioimpressão , Procedimentos de Cirurgia Plástica , Humanos , Alicerces Teciduais , Osso e Ossos , Engenharia Tecidual/métodos , Impressão Tridimensional
7.
Tissue Eng Part A ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126301

RESUMO

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.

8.
Cell Tissue Bank ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038782

RESUMO

The absence of ears in children is a global problem. An implant made of costal cartilage is the standard procedure for ear reconstruction; however, side effects such as pneumothorax, loss of thoracic cage shape, and respiratory complications have been documented. Three-dimensional (3D) printing allows the generation of biocompatible scaffolds that mimic the shape, mechanical strength, and architecture of the native extracellular matrix necessary to promote new elastic cartilage formation. We report the potential use of a 3D-bioprinted poly-ε-caprolactone (3D-PCL) auricle-shaped framework seeded with remaining human microtia chondrocytes for the development of elastic cartilage for autologous microtia ear reconstruction. An in vivo assay of the neo-tissue formed revealed the generation of a 3D pinna-shaped neo-tissue, and confirmed the formation of elastic cartilage by the presence of type II collagen and elastin with histological features and a protein composition consistent with normal elastic cartilage. According to our results, a combination of 3D-PCL auricle frameworks and autologous microtia remnant tissue generates a suitable pinna structure for autologous ear reconstruction.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37923557

RESUMO

The development of innovative vascular substitutes has become increasingly significant due to the prevalence of vascular diseases. In this study, we designed a biofunctionalized electrospun vascular scaffold by chemically conjugating heparin molecules as an antithrombotic agent with an endothelial cell (EC)-specific antibody to promote in situ endothelialization. To optimize this biofunctionalized electrospun vascular scaffolding system, we examined various parameters, including material compositions, cross-linker concentrations, and cross-linking and conjugation processes. The findings revealed that a higher degree of heparin conjugation onto the vascular scaffold resulted in improved antithrombotic properties, as confirmed by the platelet adhesion test. Additionally, the flow chamber study demonstrated that the EC-specific antibody immobilization enhanced the scaffold's EC-capturing capability compared to a nonconjugated vascular scaffold. The optimized biofunctionalized vascular scaffolds also displayed exceptional mechanical properties, such as suture retention strength and tensile properties. Our research demonstrated that the biofunctionalized vascular scaffolds and the directed immobilization of bioactive molecules could provide the necessary elements for successful acellular vascular tissue engineering applications.

11.
Mater Des ; 2332023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854951

RESUMO

Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.

12.
Sci Transl Med ; 15(716): eadf7547, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792956

RESUMO

Bioprinting is a promising alternative method to generate skin substitutes because it can replicate the structural organization of the skin into biomimetic layers in vitro. In this study, six primary human skin cell types were used to bioprint a trilayer skin construct consisting of epidermis, dermis, and hypodermis. Transplantation of the bioprinted skin with human cells onto full-thickness wounds of nu/nu mice promoted rapid vascularization and formation of epidermal rete ridges analogous to the native human epidermis, with a normal-looking extracellular matrix. Cell-specific staining confirmed the integration of the implanted cells into the regenerated skin. Using a similar approach, a 5 centimeter-by-5 centimeter bioprinted autologous porcine skin graft was transplanted onto full-thickness wounds in a porcine excisional wound model. The bioprinted skin graft improved epithelialization, reduced skin contraction, and supported normal collagen organization with reduced fibrosis. Differential gene expression demonstrated pro-remodeling protease activity in wounds transplanted with bioprinted autologous skin grafts. These results demonstrate that bioprinted skin can support skin regeneration to allow for nonfibrotic wound healing and suggest that the skin bioprinting technology may be applicable for human clinical use.


Assuntos
Pele , Cicatrização , Camundongos , Humanos , Suínos , Animais , Epiderme , Regeneração , Reepitelização , Transplante de Pele
13.
Eur Urol Focus ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37775398

RESUMO

Autologous engineered urethral constructs are a promising treatment option for definitive management of long and complex urethral strictures, with the prospect of eliminating stricture recurrence.

14.
Ann Biomed Eng ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37204546

RESUMO

Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.

15.
PLoS One ; 18(3): e0281529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881568

RESUMO

INTRODUCTION: Angiogenin-1 (Ang1) and angiogenin-4 (Ang4) are 14-kDa ribonucleases with potent angiogenic and antimicrobial properties. The role of Ang1 and Ang4 in chronic colitis and colitis-associated cancer has not been previously studied. METHODS: Wild-type (WT) and angiogenin-1 knock-out (Ang1-KO) C57BL/6 mice were given azoxymethane, a colon carcinogen, 2 days in advance of three cycles of 3.5% dextran sodium sulfate (DSS). Disease activity index (DAI) was recorded, a colonoscopy was performed after each DSS treatment, and mice were euthanized (colitis, recovery, cancer) with tissue evaluated by histopathology. Ang1, Ang4, TNF-α, Il-1F062, IL-6, IL-10, IL-23, IL-33 mRNA levels were analyzed by RT-PCR. RESULTS: Ang1-KO mice exhibited more severe colitis compared to WT mice during both the acute (P<0.05) and recovery (P<0.05) phases of each DSS cycle. Consistent with these results, colonic TNF-α, IL1-ß, IL-6, IL-10, and IL-33 mRNA levels were significantly upregulated in Ang1-KO mice (P<0.05). While Ang4 increased to similar levels in both WT and Ang1-KO mice during colitis and recovery phases, WT mice were distinguished by a significant upregulation of Ang1. Interestingly, despite the reduced colitis, WT mice developed significantly more tumors compared to Ang1-KO mice (P<0.05). 134 tumors formed in WT mice (4.6 tumors/mouse) while only 46 tumors formed (1.5 tumors/mice) in Ang1-KO mice, which were also characterized by a 34-fold decrease in Ang4 compared to WT mice and the complete absence of Ang1. CONCLUSIONS: In a mouse model of colitis-associated cancer, Ang1-KO mice develop more severe colitis, but fewer tumors compared to WT mice. Ang1 levels correlate with the severity of colitis and the development of colitis-associated cancer, while Ang4 was upregulated during both colitis and cancer. Ang1 and Ang4 play important regulatory roles in the response to chronic colitis and the development of colitis-associated cancer and may serve as novel therapeutic targets.


Assuntos
Neoplasias Associadas a Colite , Colite , Ribonuclease Pancreático , Animais , Camundongos , Carcinogênese/genética , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Modelos Animais de Doenças , Interleucina-10/genética , Interleucina-33 , Interleucina-6/genética , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/genética , Ribonuclease Pancreático/genética
16.
Biofabrication ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716498

RESUMO

Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Cartilagem , Tendões , Impressão Tridimensional
17.
Biofabrication ; 15(1)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36126638

RESUMO

3D printing has rapidly become a critical enabling technology in tissue engineering and regenerative medicine for the fabrication of complex engineered tissues. 3D bioprinting, in particular, has advanced greatly to facilitate the incorporation of a broad spectrum of biomaterials along with cells and biomolecules of interest forin vitrotissue generation. The increasing complexity of novel bioink formulations and application-dependent printing conditions poses a significant challenge for replicating or innovating new bioprinting strategies. As the field continues to grow, it is imperative to establish a cohesive, open-source database that enables users to search through existing 3D printing formulations rapidly and efficiently. Through the efforts of the NIH/NIBIB Center for Engineering Complex Tissues, we have developed, to our knowledge, the first bioink database for extrusion-based 3D printing. The database is publicly available and allows users to search through and easily access information on biomaterials and cells specifically used in 3D printing. In order to enable a community-driven database growth, we have established an open-source portal for researchers to enter their publication information for addition into the database. Although the database has a broad range of capabilities, we demonstrate its utility by performing a comprehensive analysis of the printability domains of two well-established biomaterials in the printing world, namely poly(ϵ-caprolactone) and gelatin methacrylate. The database allowed us to rapidly identify combinations of extrusion pressure, temperature, and speed that have been used to print these biomaterials and more importantly, identify domains within which printing was not possible. The data also enabled correlation analysis between all the printing parameters, including needle size and type, that exhibited compatibility for cell-based 3D printing. Overall, this database is an extremely useful tool for the 3D printing and bioprinting community to advance their research and is an important step towards standardization in the field.


Assuntos
Bioimpressão , Alicerces Teciduais , Impressão Tridimensional , Engenharia Tecidual , Materiais Biocompatíveis
18.
J Vet Intern Med ; 36(5): 1686-1692, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35930303

RESUMO

BACKGROUND: Urethral sphincter mechanism incompetence (USMI) is a common problem in female dogs, but some dogs fail to achieve continence with standard treatment. Urethral submucosal injection of autologous skeletal muscle progenitor cells (skMPCs) previously has been shown to restore urethral function in a canine model of USMI. HYPOTHESIS/OBJECTIVE: To determine if urethral submucosal injection of skMPC alters continence in dogs with USMI that had previously failed standard medical management. We hypothesized that the injections would lead to improved continence. ANIMALS: Fifteen client-owned dogs with USMI that had failed standard medical management. METHODS: Dogs were prospectively enrolled into a single-armed clinical trial. Once enrolled, a triceps muscle of each dog was biopsied; the tissue specimens were digested, cultured, and expanded to 100 million cells before injection into the urethral submucosa using a surgical approach. Continence was assessed at baseline and 3, 6, 12, and 24 months post-injection using continence scores and urethral pressure profilometry. RESULTS: Median continence scores increased significantly from baseline at 3, 6, 12, and 24 months. Increases were seen in 14 of 15 dogs with 7, 6 or 1 dog achieving scores of 5, 4 or 3, respectively. Additional medication was required to achieve continence in all but 2 dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: Urethral submucosal injection of skMPC can be used adjunctively to improve continence in dogs with difficult to manage USMI. The procedure is labor intensive but well tolerated; most dogs will require continued medication to remain continent.


Assuntos
Doenças do Cão , Incontinência Urinária , Animais , Doenças do Cão/cirurgia , Cães , Feminino , Músculo Esquelético , Células-Tronco , Uretra/cirurgia , Incontinência Urinária/terapia , Incontinência Urinária/veterinária
19.
Front Bioeng Biotechnol ; 10: 954682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935504

RESUMO

Stem cells have been introduced as a promising therapy for acute and chronic wounds, including burn injuries. The effects of stem cell-based wound therapies are believed to result from the secreted bioactive molecules produced by stem cells. Therefore, treatments using stem cell-derived conditioned medium (CM) (referred to as secretome) have been proposed as an alternative option for wound care. However, safety and regulatory concerns exist due to the uncharacterized biochemical content and variability across different batches of CM samples. This study presents an alternative treatment strategy to mitigate these concerns by using fully characterized recombinant proteins identified by the CM analysis to promote pro-regenerative healing. This study analyzed the secretome profile generated from human placental stem cell (hPSC) cultures and identified nine predominantly expressed proteins (ANG-1, FGF-7, Follistatin, HGF, IL-6, Insulin, TGFß-1, uPAR, and VEGF) that are known to contribute to wound healing and angiogenesis. These proteins, referred to as s (CMFs), were used in combination to test the effects on human dermal fibroblasts (HDFs). Our results showed that CMF treatment increased the HDF growth and accelerated cell migration and wound closure, similar to stem cell and CM treatments. In addition, the CMF treatment promoted angiogenesis by enhancing new vessel formation. These findings suggest that the defined CMF identified by the CM proteomic analysis could be an effective therapeutic solution for wound healing applications. Our strategy eliminates the regulatory concerns present with stem cell-derived secretomes and could be developed as an off-the-shelf product for immediate wound care and accelerating healing.

20.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743287

RESUMO

Oxygen-generating materials have been used in several tissue engineering applications; however, their application as in situ oxygen supply within bioprinted constructs has not been deeply studied. In this study, two oxygen-generating materials, sodium percarbonate (SPO) and calcium peroxide (CPO), were studied for their oxygen release kinetics under a 0.1% O2 condition. In addition, a novel cell-culture-insert setup was used to evaluate the effects of SPO and CPO on the viability of skeletal muscle cells under the same hypoxic condition. Results showed that SPO had a burst oxygen release, while CPO had a more stable oxygen release than SPO. Both SPO and CPO reduced cell viability when used alone. The addition of catalase in SPO and CPO increased the oxygen release rate, as well as improving the viability of skeletal muscle cells; however, CPO still showed cytotoxicity with catalase. Additionally, the utilization of 1 mg/mL SPO and 20 U catalase in a hydrogel for bioprinting significantly enhanced the cell viability under the hypoxic condition. Moreover, bioprinted muscle constructs could further differentiate into elongated myotubes when transferring back to the normoxic condition. This work provides an excellent in vitro model to test oxygen-generating materials and further discover their applications in bioprinting, where they represent promising avenues to overcome the challenge of oxygen shortage in bioprinted constructs before their complete vascularization.


Assuntos
Bioimpressão , Engenharia Tecidual , Carbonatos , Catalase , Humanos , Hipóxia , Cinética , Oxigênio , Peróxidos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA