Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 13: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182975

RESUMO

BACKGROUND: A transcriptional reporter is the key component in bacterial biosensors which are employed to monitor the induction or repression of a reporter gene corresponding to environmental change. Interaction of a transcription factor with its consensus sequence generated by using a position weight matrix (PWM) model is crucial for its sensitivity of the reporter. However, recent studies suggest that PWM model based on independent contribution of individual consensus base pairs to protein interaction is often insufficient to explain complex regulation, such as the effect of nonconsensus sequences on the protein-DNA binding affinity. In the present study, we employed a simpler prokaryotic arsenic repressor (ArsR) regulation system to access the protein-DNA recognition. Contribution of nonconsensus base pairs within ArsR binding sequences toward ArsR-DNA binding and arsenic-mediated transcriptional induction was studied. RESULTS: We constructed a series of arsenic responsive reporters, each comprising two copies of the ArsR binding sequences from different resources. We found that high arsenic-mediated induction specifically requires the binding sequence from Escherichia coli to be placed at the first binding sequence; however, no such preference was observed for the second binding sequence, which could be from Acidithiobacillus ferrooxidans, plasmid R773, Synechococcus, or a core binding sequence of arsR. By creating a series of reporters differed at the nonconsensus base pairs of the second binding sequence, we observed that some constructs bound weakly while others strongly to ArsR. Most interestingly, although a number of these reporters showed similar binding affinity to ArsR, their arsenic-dependent induction differed significantly. CONCLUSIONS: The results indicated that nonconsensus base pairs could have profound influence on protein binding and may also modulate post-binding function. These findings provide new insights into the complex regulation of gene expression and facilitate the development of transcriptional reporter-based biosensors.

2.
Appl Microbiol Biotechnol ; 102(13): 5753-5761, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29766244

RESUMO

The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 µM arsenite (~ 5 µg/L). They showed a wide dynamic range of detection up to 50 µM using high copy number pLHPars9 and 100 µM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.


Assuntos
Arsenitos/metabolismo , Proteínas de Escherichia coli/genética , Dosagem de Genes , Genes Reporter , Metais/metabolismo , Plasmídeos/genética , Transativadores/genética , Proteínas de Bactérias/genética , Técnicas Biossensoriais , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA