Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
3.
Nat Cell Biol ; 25(7): 963-974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231161

RESUMO

Dysfunctional autophagy has been implicated in the pathogenesis of Alzheimer's disease (AD). Previous evidence suggested disruptions of multiple stages of the autophagy-lysosomal pathway in affected neurons. However, whether and how deregulated autophagy in microglia, a cell type with an important link to AD, contributes to AD progression remains elusive. Here we report that autophagy is activated in microglia, particularly of disease-associated microglia surrounding amyloid plaques in AD mouse models. Inhibition of microglial autophagy causes disengagement of microglia from amyloid plaques, suppression of disease-associated microglia, and aggravation of neuropathology in AD mice. Mechanistically, autophagy deficiency promotes senescence-associated microglia as evidenced by reduced proliferation, increased Cdkn1a/p21Cip1, dystrophic morphologies and senescence-associated secretory phenotype. Pharmacological treatment removes autophagy-deficient senescent microglia and alleviates neuropathology in AD mice. Our study demonstrates the protective role of microglial autophagy in regulating the homeostasis of amyloid plaques and preventing senescence; removal of senescent microglia is a promising therapeutic strategy.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Autofagia/fisiologia , Neurônios/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
4.
J Hematol Oncol ; 15(1): 156, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289517

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor clinical outcomes. Emerging data suggest that mitochondrial oxidative phosphorylation (mtOXPHOS) plays a significant role in AML tumorigenesis, progression, and resistance to chemotherapies. However, how the mtOXPHOS is regulated in AML cells is not well understood. In this study, we investigated the oncogenic functions of ERRα in AML by combining in silico, in vitro, and in vivo analyses and showed ERRα is a key regulator of mtOXPHOS in AML cells. The increased ERRα level was associated with worse clinical outcomes of AML patients. Single cell RNA-Seq analysis of human primary AML cells indicated that ERRα-expressing cancer cells had significantly higher mtOXPHOS enrichment scores. Blockade of ERRα by pharmacologic inhibitor (XCT-790) or gene silencing suppressed mtOXPHOS and increased anti-leukemic effects in vitro and in xenograft mouse models.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Fosforilação Oxidativa , Apoptose , Mitocôndrias/metabolismo , Leucemia Mieloide Aguda/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Receptor ERRalfa Relacionado ao Estrogênio
5.
Am J Respir Crit Care Med ; 206(12): 1480-1494, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35848993

RESUMO

Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Fator Nuclear 1 de Tireoide , Animais , Humanos , Camundongos , Transformação Celular Neoplásica , Pulmão , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Nuclear 1 de Tireoide/genética
6.
BMC Med Genomics ; 15(1): 134, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710421

RESUMO

BACKGROUND: Hepatitis B virus (HBV) related hepatocellular carcinoma (HCC) is heterogeneous and frequently contains multifocal tumors, but how the multifocal tumors relate to each other in terms of HBV integration and other genomic patterns is not clear. METHODS: To interrogate heterogeneity of HBV-HCC, we developed a HBV genome enriched single cell sequencing (HGE-scSeq) procedure and a computational method to identify HBV integration sites and infer DNA copy number variations (CNVs). RESULTS: We performed HGE-scSeq on 269 cells from four tumor sites and two tumor thrombi of a HBV-HCC patient. HBV integrations were identified in 142 out of 269 (53%) cells sequenced, and were enriched in two HBV integration hotspots chr1:34,397,059 (CSMD2) and chr8:118,557,327 (MED30/EXT1). There were also 162 rare integration sites. HBV integration sites were enriched in DNA fragile sites and sequences around HBV integration sites were enriched for microhomologous sequences between human and HBV genomes. CNVs were inferred for each individual cell and cells were grouped into four clonal groups based on their CNVs. Cells in different clonal groups had different degrees of HBV integration heterogeneity. All of 269 cells carried chromosome 1q amplification, a recurrent feature of HCC tumors, suggesting that 1q amplification occurred before HBV integration events in this case study. Further, we performed simulation studies to demonstrate that the sequential events (HBV infecting transformed cells) could result in the observed phenotype with biologically reasonable parameters. CONCLUSION: Our HGE-scSeq data reveals high heterogeneity of HCC tumor cells in terms of both HBV integrations and CNVs. There were two HBV integration hotspots across cells, and cells from multiple tumor sites shared some HBV integration and CNV patterns.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Variações do Número de Cópias de DNA , DNA Viral/genética , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Integração Viral
7.
Carcinogenesis ; 43(6): 528-537, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35239955

RESUMO

There is increased incidence of prostate cancer (PC) among World Trade Center (WTC)-exposed responders and community members, with preliminary evidence suggestive of more aggressive disease. While previous research is supportive of differences in DNA methylation and gene expression as a consequence of WTC exposure, as measured in blood of healthy individuals, the epigenetics of WTC PC tissues has yet to be explored. Patients were recruited from the World Trade Center Health Program. Non-WTC PC samples were frequency matched on age, race/ethnicity and Gleason score. Bisulfite-treated DNA was extracted from tumor tissue blocks and used to assess global DNA methylation with the MethylationEPIC BeadChip. Differential and pathway enrichment analyses were conducted. RNA from the same tumor blocks was used for gene expression analysis to further support DNA methylation findings. Methylation data were generated for 28 samples (13 WTC and 15 non-WTC). Statistically significant differences in methylation were observed for 3,586 genes; on average WTC samples were statistically significantly more hypermethylated (P = 0.04131). Pathway enrichment analysis revealed hypermethylation in epithelial mesenchymal transition (EMT), hypoxia, mitotic spindle, TNFA signaling via NFKB, WNT signaling, and TGF beta signaling pathways in WTC compared to non-WTC samples. The androgen response, G2M and MYC target pathways were hypomethylated. These results correlated well with RNA gene expression. In conclusion, long-term epigenic changes associated with WTC dust exposure were observed in PC tissues. These occurred in genes of critical pathways, likely increasing prostate tumorigenesis potential. This warrants analysis of larger WTC groups and other cancer types.


Assuntos
Neoplasias da Próstata , Ataques Terroristas de 11 de Setembro , Metilação de DNA/genética , Poeira , Humanos , Masculino , Neoplasias da Próstata/genética , RNA
8.
Nat Commun ; 13(1): 1592, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332150

RESUMO

Here we focus on the molecular characterization of clinically significant histological subtypes of early-stage lung adenocarcinoma (esLUAD), which is the most common histological subtype of lung cancer. Within lung adenocarcinoma, histology is heterogeneous and associated with tumor invasion and diverse clinical outcomes. We present a gene signature distinguishing invasive and non-invasive tumors among esLUAD. Using the gene signatures, we estimate an Invasiveness Score that is strongly associated with survival of esLUAD patients in multiple independent cohorts and with the invasiveness phenotype in lung cancer cell lines. Regulatory network analysis identifies aurora kinase as one of master regulators of the gene signature and the perturbation of aurora kinases in vitro and in a murine model of invasive lung adenocarcinoma reduces tumor invasion. Our study reveals aurora kinases as a therapeutic target for treatment of early-stage invasive lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Aurora Quinases , Humanos , Neoplasias Pulmonares/patologia , Macrolídeos , Camundongos
9.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158979

RESUMO

Lung cancer is the most common cause of cancer-related deaths in both men and women, accounting for one-quarter of total cancer-related mortality globally. Lung adenocarcinoma is the major subtype of non-small cell lung cancer (NSCLC) and accounts for around 40% of lung cancer cases. Lung adenocarcinoma is a highly heterogeneous disease and patients often display variable histopathological morphology, genetic alterations, and genomic aberrations. Recent advances in transcriptomic and genetic profiling of lung adenocarcinoma by investigators, including our group, has provided better stratification of this heterogeneous disease, which can facilitate devising better treatment strategies suitable for targeted patient cohorts. In a recent study we have shown gene expression profiling identified novel clustering of early stage LUAD patients and correlated with tumor invasiveness and patient survival. In this study, we focused on copy number alterations in LUAD patients. SNP array data identified amplification at chromosome 12q15 on MDM2 locus and protein overexpression in a subclass of LUAD patients with an invasive subtype of the disease. High copy number amplification and protein expression in this subclass correlated with poor overall survival. We hypothesized that MDM2 copy number and overexpression predict response to MDM2-targeted therapy. In vitro functional data on a panel of LUAD cells showed that MDM2-targeted therapy effectively suppresses cell proliferation, migration, and invasion in cells with MDM2 amplification/overexpression but not in cells without MDM2 amplification, independent of p53 status. To determine the key signaling mechanisms, we used RNA sequencing (RNA seq) to examine the response to therapy in MDM2-amplified/overexpressing p53 mutant and wild-type LUAD cells. RNA seq data shows that in MDM2-amplified/overexpression with p53 wild-type condition, the E2F → PEG10 → MMPs pathway is operative, while in p53 mutant genetic background, MDM2-targeted therapy abrogates tumor progression in LUAD cells by suppressing epithelial to mesenchymal transition (EMT) signaling. Our study provides a potentially clinically relevant strategy of selecting LUAD patients for MDM2-targeted therapy that may provide for increased response rates and, thus, better survival.

10.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
11.
Patterns (N Y) ; 2(5): 100245, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34036290

RESUMO

Sample mislabeling or misannotation has been a long-standing problem in scientific research, particularly prevalent in large-scale, multi-omic studies due to the complexity of multi-omic workflows. There exists an urgent need for implementing quality controls to automatically screen for and correct sample mislabels or misannotations in multi-omic studies. Here, we describe a crowdsourced precisionFDA NCI-CPTAC Multi-omics Enabled Sample Mislabeling Correction Challenge, which provides a framework for systematic benchmarking and evaluation of mislabel identification and correction methods for integrative proteogenomic studies. The challenge received a large number of submissions from domestic and international data scientists, with highly variable performance observed across the submitted methods. Post-challenge collaboration between the top-performing teams and the challenge organizers has created an open-source software, COSMO, with demonstrated high accuracy and robustness in mislabeling identification and correction in simulated and real multi-omic datasets.

12.
Cancer Cell ; 39(4): 509-528.e20, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33577785

RESUMO

Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteogenômica , Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Glioblastoma/patologia , Humanos , Metabolômica/métodos , Mutação/genética , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteogenômica/métodos , Proteômica/métodos
13.
Cancer Cell ; 39(3): 361-379.e16, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417831

RESUMO

We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Receptores ErbB/genética , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/virologia , Proteogenômica/métodos , Proteômica/métodos , Adulto Jovem
14.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514539

RESUMO

Comprehensive genomic analyses of small cell lung cancer (SCLC) have revealed frequent mutually exclusive genomic amplification of MYC family members. Hence, it has been long suggested that they are functionally equivalent; however, more recently, their expression has been associated with specific neuroendocrine markers and distinct histopathology. Here, we explored a previously undescribed role of L-Myc and c-Myc as lineage-determining factors contributing to SCLC molecular subtypes and histology. Integrated transcriptomic and epigenomic analyses showed that L-Myc and c-Myc impart neuronal and non-neuroendocrine-associated transcriptional programs, respectively, both associated with distinct SCLC lineage. Genetic replacement of c-Myc with L-Myc in c-Myc-SCLC induced a neuronal state but was insufficient to induce ASCL1-SCLC. In contrast, c-Myc induced transition from ASCL1-SCLC to NEUROD1-SCLC characterized by distinct large-cell neuroendocrine carcinoma-like histopathology. Collectively, we characterize a role of historically defined general oncogenes, c-Myc and L-Myc, for regulating lineage plasticity across molecular and histological subtypes.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Oncogenes , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo
15.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33242424

RESUMO

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
16.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649874

RESUMO

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteogenômica , Adenocarcinoma de Pulmão/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica , Fenótipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
17.
Genome Med ; 12(1): 24, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111252

RESUMO

BACKGROUND: Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. METHODS: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. RESULTS: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. CONCLUSIONS: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types.


Assuntos
Neoplasias/classificação , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Software , Células Estromais/classificação , Células Estromais/metabolismo
19.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675502

RESUMO

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Neoplasias/genética , Proteogenômica , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Intervalo Livre de Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Fosforilação Oxidativa , Fosforilação/genética , Transdução de Sinais/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Sequenciamento do Exoma
20.
Cancers (Basel) ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569720

RESUMO

Multiple myeloma (MM) is the second most prevalent hematological cancer. MM is a complex and heterogeneous disease, and thus, it is essential to leverage omics data from large MM cohorts to understand the molecular mechanisms underlying MM tumorigenesis, progression, and drug responses, which may aid in the development of better treatments. In this study, we analyzed gene expression, copy number variation, and clinical data from the Multiple Myeloma Research Consortium (MMRC) dataset and constructed a multiple myeloma molecular causal network (M3CN). The M3CN was used to unify eight prognostic gene signatures in the literature that shared very few genes between them, resulting in a prognostic subnetwork of the M3CN, consisting of 178 genes that were enriched for genes involved in cell cycle (fold enrichment = 8.4, p value = 6.1 × 10-26). The M3CN was further used to characterize immunomodulators and proteasome inhibitors for MM, demonstrating the pleiotropic effects of these drugs, with drug-response signature genes enriched across multiple M3CN subnetworks. Network analyses indicated potential links between these drug-response subnetworks and the prognostic subnetwork. To elucidate the structure of these important MM subnetworks, we identified putative key regulators predicted to modulate the state of these subnetworks. Finally, to assess the predictive power of our network-based models, we stratified MM patients in an independent cohort, the MMRF-CoMMpass study, based on the prognostic subnetwork, and compared the performance of this subnetwork against other signatures in the literature. We show that the M3CN-derived prognostic subnetwork achieved the best separation between different risk groups in terms of log-rank test p-values and hazard ratios. In summary, this work demonstrates the power of a probabilistic causal network approach to understanding molecular mechanisms underlying the different MM signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA