Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Bioinform ; 4: 1280971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812660

RESUMO

Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.

2.
IEEE Trans Image Process ; 33: 3508-3519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809733

RESUMO

Domain Generalization (DG) aims to learn a generalizable model on the unseen target domain by only training on the multiple observed source domains. Although a variety of DG methods have focused on extracting domain-invariant features, the domain-specific class-relevant features have attracted attention and been argued to benefit generalization to the unseen target domain. To take into account the class-relevant domain-specific information, in this paper we propose an Information theory iNspired diSentanglement and pURification modEl (INSURE) to explicitly disentangle the latent features to obtain sufficient and compact (necessary) class-relevant feature for generalization to the unseen domain. Specifically, we first propose an information theory inspired loss function to ensure the disentangled class-relevant features contain sufficient class label information and the other disentangled auxiliary feature has sufficient domain information. We further propose a paired purification loss function to let the auxiliary feature discard all the class-relevant information and thus the class-relevant feature will contain sufficient and compact (necessary) class-relevant information. Moreover, instead of using multiple encoders, we propose to use a learnable binary mask as our disentangler to make the disentanglement more efficient and make the disentangled features complementary to each other. We conduct extensive experiments on five widely used DG benchmark datasets including PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. The proposed INSURE achieves state-of-the-art performance. We also empirically show that domain-specific class-relevant features are beneficial for domain generalization. The code is available at https://github.com/yuxi120407/INSURE.

3.
IEEE Trans Cybern ; PP2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593009

RESUMO

While deep neural networks (DNNs) have revolutionized many fields, their fragility to carefully designed adversarial attacks impedes the usage of DNNs in safety-critical applications. In this article, we strive to explore the robust features that are not affected by the adversarial perturbations, that is, invariant to the clean image and its adversarial examples (AEs), to improve the model's adversarial robustness. Specifically, we propose a feature disentanglement model to segregate the robust features from nonrobust features and domain-specific features. The extensive experiments on five widely used datasets with different attacks demonstrate that robust features obtained from our model improve the model's adversarial robustness compared to the state-of-the-art approaches. Moreover, the trained domain discriminator is able to identify the domain-specific features from the clean images and AEs almost perfectly. This enables AE detection without incurring additional computational costs. With that, we can also specify different classifiers for clean images and AEs, thereby avoiding any drop in clean image accuracy.

4.
J Phys Chem A ; 128(10): 1948-1957, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416723

RESUMO

Accurate classification of molecular chemical motifs from experimental measurement is an important problem in molecular physics, chemistry, and biology. In this work, we present neural network ensemble classifiers for predicting the presence (or lack thereof) of 41 different chemical motifs on small molecules from simulated C, N, and O K-edge X-ray absorption near-edge structure (XANES) spectra. Our classifiers not only achieve class-balanced accuracies of more than 0.95 but also accurately quantify uncertainty. We also show that including multiple XANES modalities improves predictions notably on average, demonstrating a "multimodal advantage" over any single modality. In addition to structure refinement, our approach can be generalized to broad applications with molecular design pipelines.

5.
IEEE Trans Neural Netw Learn Syst ; 35(3): 3340-3350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271160

RESUMO

Grid emergency voltage control (GEVC) is paramount in electric power systems to improve voltage stability and prevent cascading outages and blackouts in case of contingencies. While most deep reinforcement learning (DRL)-based paradigms perform single agents in a static environment, real-world agents for GEVC are expected to cooperate in a dynamically shifting grid. Moreover, due to high uncertainties from combinatory natures of various contingencies and load consumption, along with the complexity of dynamic grid operation, the data efficiency and control performance of the existing DRL-based methods are challenged. To address these limitations, we propose a multi-agent graph-attention (GATT)-based DRL algorithm for GEVC in multi-area power systems. We develop graph convolutional network (GCN)-based agents for feature representation of the graph-structured voltages to improve the decision accuracy in a data-efficient manner. Furthermore, a cutting-edge attention mechanism concentrates on effective information sharing among multiple agents, synergizing different-sized subnetworks in the grid for cooperative learning. We address several key challenges in the existing DRL-based GEVC approaches, including low scalability and poor stability against high uncertainties. Test results in the IEEE benchmark system verify the advantages of the proposed method over several recent multi-agent DRL-based algorithms.

6.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37982712

RESUMO

Interpretation of cryo-electron microscopy (cryo-EM) maps requires building and fitting 3D atomic models of biological molecules. AlphaFold-predicted models generate initial 3D coordinates; however, model inaccuracy and conformational heterogeneity often necessitate labor-intensive manual model building and fitting into cryo-EM maps. In this work, we designed a protein model-building workflow, which combines a deep-learning cryo-EM map feature enhancement tool, CryoFEM (Cryo-EM Feature Enhancement Model) and AlphaFold. A benchmark test using 36 cryo-EM maps shows that CryoFEM achieves state-of-the-art performance in optimizing the Fourier Shell Correlations between the maps and the ground truth models. Furthermore, in a subset of 17 datasets where the initial AlphaFold predictions are less accurate, the workflow significantly improves their model accuracy. Our work demonstrates that the integration of modern deep learning image enhancement and AlphaFold may lead to automated model building and fitting for the atomistic interpretation of cryo-EM maps.


Assuntos
Aprendizado Profundo , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Conformação Molecular , Conformação Proteica
7.
BMC Genom Data ; 24(1): 52, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710206

RESUMO

BACKGROUND: When polygenic risk score (PRS) is derived from summary statistics, independence between discovery and test sets cannot be monitored. We compared two types of PRS studies derived from raw genetic data (denoted as rPRS) and the summary statistics for IGAP (sPRS). RESULTS: Two variables with the high heritability in UK Biobank, hypertension, and height, are used to derive an exemplary scale effect of PRS. sPRS without APOE is derived from International Genomics of Alzheimer's Project (IGAP), which records ΔAUC and ΔR2 of 0.051 ± 0.013 and 0.063 ± 0.015 for Alzheimer's Disease Sequencing Project (ADSP) and 0.060 and 0.086 for Accelerating Medicine Partnership - Alzheimer's Disease (AMP-AD). On UK Biobank, rPRS performances for hypertension assuming a similar size of discovery and test sets are 0.0036 ± 0.0027 (ΔAUC) and 0.0032 ± 0.0028 (ΔR2). For height, ΔR2 is 0.029 ± 0.0037. CONCLUSION: Considering the high heritability of hypertension and height of UK Biobank and sample size of UK Biobank, sPRS results from AD databases are inflated. Independence between discovery and test sets is a well-known basic requirement for PRS studies. However, a lot of PRS studies cannot follow such requirements because of impossible direct comparisons when using summary statistics. Thus, for sPRS, potential duplications should be carefully considered within the same ethnic group.


Assuntos
Doença de Alzheimer , Hipertensão , Humanos , Bases de Dados Factuais , Etnicidade , Genômica , Hipertensão/genética
8.
Sci Data ; 10(1): 349, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268638

RESUMO

X-ray absorption spectroscopy (XAS) is a premier technique for materials characterization, providing key information about the local chemical environment of the absorber atom. In this work, we develop a database of sulfur K-edge XAS spectra of crystalline and amorphous lithium thiophosphate materials based on the atomic structures reported in Chem. Mater., 34, 6702 (2022). The XAS database is based on simulations using the excited electron and core-hole pseudopotential approach implemented in the Vienna Ab initio Simulation Package. Our database contains 2681 S K-edge XAS spectra for 66 crystalline and glassy structure models, making it the largest collection of first-principles computational XAS spectra for glass/ceramic lithium thiophosphates to date. This database can be used to correlate S spectral features with distinct S species based on their local coordination and short-range ordering in sulfide-based solid electrolytes. The data is openly distributed via the Materials Cloud, allowing researchers to access it for free and use it for further analysis, such as spectral fingerprinting, matching with experiments, and developing machine learning models.

9.
Mar Pollut Bull ; 190: 114832, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934488

RESUMO

This study was conducted in northern New Jersey, USA, to estimate the nutrient fluxes from the Passaic River, the Hackensack River and other sources into Newark Bay and the nutrient residence time in Newark Bay. Bi-weekly total inorganic nitrogen (TIN) and orthophosphate concentration data in the Passaic River, the Hackensack River, and Newark Bay for over 15 years (2004-2019) were collected along with daily river discharge data from the public database. The annual TIN and orthophosphate (ortho-P) loading from the Passaic River ranged from 915 × 103 kg y-1 to 251 × 104 kg y-1 and 94 × 103 kg y-1to 372 × 103 kg y-1, respectively. The annual TIN and ortho-P loading from the Hackensack River ranged from 3.13 × 103 kg y-1 to 234 × 103 kg y-1 and 0.28 × 103 kg y-1 to 6.97 × 103 kg y-1, respectively. Seasonal variation results indicated that hurricane events highly increased TIN and ortho-P loading from riverine input and reduced residence time in Newark Bay.


Assuntos
Baías , Poluentes Químicos da Água , Monitoramento Ambiental , New Jersey , Rios , Poluentes Químicos da Água/análise
10.
Sci Rep ; 13(1): 2453, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774365

RESUMO

Quantum machine learning (QML) can complement the growing trend of using learned models for a myriad of classification tasks, from image recognition to natural speech processing. There exists the potential for a quantum advantage due to the intractability of quantum operations on a classical computer. Many datasets used in machine learning are crowd sourced or contain some private information, but to the best of our knowledge, no current QML models are equipped with privacy-preserving features. This raises concerns as it is paramount that models do not expose sensitive information. Thus, privacy-preserving algorithms need to be implemented with QML. One solution is to make the machine learning algorithm differentially private, meaning the effect of a single data point on the training dataset is minimized. Differentially private machine learning models have been investigated, but differential privacy has not been thoroughly studied in the context of QML. In this study, we develop a hybrid quantum-classical model that is trained to preserve privacy using differentially private optimization algorithm. This marks the first proof-of-principle demonstration of privacy-preserving QML. The experiments demonstrate that differentially private QML can protect user-sensitive information without signficiantly diminishing model accuracy. Although the quantum model is simulated and tested on a classical computer, it demonstrates potential to be efficiently implemented on near-term quantum devices [noisy intermediate-scale quantum (NISQ)]. The approach's success is illustrated via the classification of spatially classed two-dimensional datasets and a binary MNIST classification. This implementation of privacy-preserving QML will ensure confidentiality and accurate learning on NISQ technology.

11.
Sci Rep ; 12(1): 17821, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280773

RESUMO

In recent years, data-driven, deep-learning-based models have shown great promise in medical risk prediction. By utilizing the large-scale Electronic Health Record data found in the U.S. Department of Veterans Affairs, the largest integrated healthcare system in the United States, we have developed an automated, personalized risk prediction model to support the clinical decision-making process for localized prostate cancer patients. This method combines the representative power of deep learning and the analytical interpretability of parametric regression models and can implement both time-dependent and static input data. To collect a comprehensive evaluation of model performances, we calculate time-dependent C-statistics [Formula: see text] over 2-, 5-, and 10-year time horizons using either a composite outcome or prostate cancer mortality as the target event. The composite outcome combines the Prostate-Specific Antigen (PSA) test, metastasis, and prostate cancer mortality. Our longitudinal model Recurrent Deep Survival Machine (RDSM) achieved [Formula: see text] 0.85 (0.83), 0.80 (0.83), and 0.76 (0.81), while the cross-sectional model Deep Survival Machine (DSM) attained [Formula: see text] 0.85 (0.82), 0.80 (0.82), and 0.76 (0.79) for the 2-, 5-, and 10-year composite (mortality) outcomes, respectively. In addition to estimating the survival probability, our method can quantify the uncertainty associated with the prediction. The uncertainty scores show a consistent correlation with the prediction accuracy. We find PSA and prostate cancer stage information are the most important indicators in risk prediction. Our work demonstrates the utility of the data-driven machine learning model in prostate cancer risk prediction, which can play a critical role in the clinical decision system.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Estados Unidos , Antígeno Prostático Específico , Estudos Transversais , Neoplasias da Próstata/patologia , Análise de Sobrevida
12.
Entropy (Basel) ; 23(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924721

RESUMO

Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.

13.
IUCrJ ; 8(Pt 1): 12-21, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520239

RESUMO

The reconstruction of a single-particle image from the modulus of its Fourier transform, by phase-retrieval methods, has been extensively applied in X-ray structural science. Particularly for strong-phase objects, such as the phase domains found inside crystals by Bragg coherent diffraction imaging (BCDI), conventional iteration methods are time consuming and sensitive to their initial guess because of their iterative nature. Here, a deep-neural-network model is presented which gives a fast and accurate estimate of the complex single-particle image in the form of a universal approximator learned from synthetic data. A way to combine the deep-neural-network model with conventional iterative methods is then presented to refine the accuracy of the reconstructed results from the proposed deep-neural-network model. Improved convergence is also demonstrated with experimental BCDI data.

14.
Phys Rev Lett ; 124(15): 156401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357067

RESUMO

Simulations of excited state properties, such as spectral functions, are often computationally expensive and therefore not suitable for high-throughput modeling. As a proof of principle, we demonstrate that graph-based neural networks can be used to predict the x-ray absorption near-edge structure spectra of molecules to quantitative accuracy. Specifically, the predicted spectra reproduce nearly all prominent peaks, with 90% of the predicted peak locations within 1 eV of the ground truth. Besides its own utility in spectral analysis and structure inference, our method can be combined with structure search algorithms to enable high-throughput spectrum sampling of the vast material configuration space, which opens up new pathways to material design and discovery.

15.
NPJ Digit Med ; 3: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258428

RESUMO

Nationwide population-based cohort provides a new opportunity to build an automated risk prediction model based on individuals' history of health and healthcare beyond existing risk prediction models. We tested the possibility of machine learning models to predict future incidence of Alzheimer's disease (AD) using large-scale administrative health data. From the Korean National Health Insurance Service database between 2002 and 2010, we obtained de-identified health data in elders above 65 years (N = 40,736) containing 4,894 unique clinical features including ICD-10 codes, medication codes, laboratory values, history of personal and family illness and socio-demographics. To define incident AD we considered two operational definitions: "definite AD" with diagnostic codes and dementia medication (n = 614) and "probable AD" with only diagnosis (n = 2026). We trained and validated random forest, support vector machine and logistic regression to predict incident AD in 1, 2, 3, and 4 subsequent years. For predicting future incidence of AD in balanced samples (bootstrapping), the machine learning models showed reasonable performance in 1-year prediction with AUC of 0.775 and 0.759, based on "definite AD" and "probable AD" outcomes, respectively; in 2-year, 0.730 and 0.693; in 3-year, 0.677 and 0.644; in 4-year, 0.725 and 0.683. The results were similar when the entire (unbalanced) samples were used. Important clinical features selected in logistic regression included hemoglobin level, age and urine protein level. This study may shed a light on the utility of the data-driven machine learning model based on large-scale administrative health data in AD risk prediction, which may enable better selection of individuals at risk for AD in clinical trials or early detection in clinical settings.

17.
Neuroimage Clin ; 23: 101859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150957

RESUMO

Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping-morphometry and structural connectomics-and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N = 211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features = 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid ß, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n = 60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Multimodal , Prognóstico , Substância Branca/patologia
18.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046292

RESUMO

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

19.
Chemosphere ; 204: 359-370, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674148

RESUMO

The present study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 µm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elements measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.


Assuntos
Raízes de Plantas/metabolismo , Poaceae/metabolismo , Oligoelementos/análise , Oligoelementos/metabolismo , Estações do Ano
20.
Sci Rep ; 7: 40420, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098254

RESUMO

This paper reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 µm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis, outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.


Assuntos
Nanopartículas/química , Dormência de Plantas , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Oligoelementos/análise , Análise de Variância , Análise por Conglomerados , Modelos Lineares , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA