Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng ; 12: 20417314211008626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959246

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital components of regenerative medicine. Typically, various isolation methods of exosomes from cell culture medium have been developed to increase the isolation yield of exosomes. Moreover, the exosome-depletion process of serum has been considered to result in clinically active and highly purified exosomes from the cell culture medium. Our aim was to compare isolation methods, ultracentrifuge (UC)-based conventional method, and tangential flow filtration (TFF) system-based method for separation with high yield, and the bioactivity of the exosome according to the purity of MSC-derived exosome was determined by the ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome depending on exosome depletion processes of FBS. The TFF-based isolation yield of exosome derived from human umbilical cord MSC (UCMSC) increased two orders (92.5 times) compared to UC-based isolation method. Moreover, by optimizing the process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome, evaluated using the expression level of MSC exosome surface marker (CD73), was about 15.6 times enhanced and the concentration of low-density lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved to be negligibly detected. The wound healing and angiogenic effects of highly purified UCMSC-derived exosomes were improved about 23.1% and 71.4%, respectively, with human coronary artery endothelial cells (HCAEC). It suggests that the defined MSC exosome with high yield and purity could increase regenerative activity.

2.
ACS Nano ; 15(4): 7575-7585, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33724774

RESUMO

Kidney tissue engineering and regeneration approaches offer great potential for chronic kidney disease treatment, but kidney tissue complexity imposes an additional challenge in applying regenerative medicine for renal tissue regeneration. In this study, a porous pneumatic microextrusion (PME) composite scaffold consisting of poly(lactic-co-glycolic acid) (PLGA, P), magnesium hydroxide (MH, M), and decellularized porcine kidney extracellular matrix (kECM, E) is functionalized with bioactive compounds, polydeoxyribonucleotide (PDRN), and tumour necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-primed mesenchymal stem-cell-derived extracellular vesicles (TI-EVs) to improve the regeneration and maintenance of a functional kidney tissue. The combination of PDRN and TI-EVs showed a significant synergistic effect in regenerative processes including cellular proliferation, angiogenesis, fibrosis, and inflammation. In addition, the PME/PDRN/TI-EV scaffold induced an effective glomerular regeneration and restoration of kidney function compared to the existing PME scaffold in a partial nephrectomy mouse model. Therefore, such an integrated bioactive scaffold that combines biochemical cues from PDRN and TI-EVs and biophysical cues from a porous PLGA scaffold containing MH and kECM can be used as an advanced tissue engineering platform for kidney tissue regeneration.


Assuntos
Vesículas Extracelulares , Rim , Animais , Camundongos , Polidesoxirribonucleotídeos , Regeneração , Suínos , Engenharia Tecidual , Alicerces Teciduais
3.
Tissue Eng Regen Med ; 17(2): 155-163, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32026314

RESUMO

BACKGROUND: Inflammation induces dysfunction of endothelial cells via inflammatory cell adhesion, and this phenomenon and reactive oxygen species accumulation are pivotal triggers for atherosclerosis-related vascular disease. Although exosomes are excellent candidate as an inhibitor in the inflammation pathway, it is necessary to develop exosome-mimetic nanovesicles (NVs) due to limitations of extremely low release rate and difficult isolation of natural exosomes. NVs are produced in much larger quantities than natural exosomes, but due to the low flexibility of the cell membranes, the high loss caused by hanging on the filter membranes during extrusion remains a challenge to overcome. Therefore, by making cell membranes more flexible, more efficient production of NVs can be expected. METHODS: To increase the flexibility of the cell membranes, the suspension of umbilical cord-mesenchymal stem cells (UC-MSCs) was subjected to 5 freeze and thaw cycles (FT) before serial extrusion. After serial extrusion through membranes with three different pore sizes, FT/NVs were isolated using a tangential flow filtration (TFF) system. NVs or FT/NVs were pretreated to the human coronary artery endothelial cells (HCAECs), and then inflammation was induced using tumor necrosis factor-α (TNF-α). RESULTS: With the freeze and thaw process, the production yield of exosome-mimetic nanovesicles (FT/NVs) was about 3 times higher than the conventional production method. The FT/NVs have similar biological properties as NVs for attenuating TNF-α induced inflammation. CONCLUSION: We proposed the efficient protocol for the production of NVs with UC-MSCs using the combination of freeze and thaw process with a TFF system. The FT/NVs successfully attenuated the TNF-α induced inflammation in HCAECs.


Assuntos
Biomimética , Células Endoteliais/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Fator de Necrose Tumoral alfa/metabolismo , Cordão Umbilical/citologia , Aterosclerose/metabolismo , Adesão Celular , Citocinas , Humanos , Espécies Reativas de Oxigênio , Células THP-1
4.
J Cell Biochem ; 117(5): 1145-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26448639

RESUMO

Mesenchymal stem cells (MSCs) are a powerful source for cell therapy in degenerative diseases. The migration ability of MSCs is an important factor that enhances the therapeutic effect of the cells when they are transplanted into target tissues or organs. Hypoxia and the endothelial barrier, which are representative migration microenvironmental factors, are known to be regulated by the integrin-mediated pathway in several cancers. However, their regulatory mechanisms in MSCs remain unclear. Here, the objectives of the study were to compare the expression of markers related to integrin-mediated signaling in placenta-derived MSCs (PDMSCs) dependent on hypoxia and co-cultured with human umbilical vein endothelial cells (HUVECs) and to evaluate their correlations between migration ability and microenvironmetal factors including hypoxia and endothelial cells. The migration abilities of PDMSCs exposed to hypoxic conditions were significantly increased compared with normal fibroblasts (WI-38) and control (P < 0.05). Interestingly, decreased integrin α4 in PDMSCs under hypoxia induce to increase migration abilities of PDMSCs. Also, Rho family-related markers were significantly increased in PDMSCs under hypoxic conditions compared with normoxia (P < 0.05). Furthermore, the migration ability of PDMSCs was decreased by Rho kinase inhibitor treatment (Y-27632) and co-culturing with HUVECs in an ex vivo system. ROCK activity was increased by inhibiting integrin α4 with HUVECs and hypoxia compared with the absence of HUVECs and under normoxia. The findings suggest microenvironment event by hypoxia and the interaction with endothelial cells may be useful as a regulator of MSC migration and provide insight into the migratory mechanism of MSCs in stem cell-based therapy.


Assuntos
Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Integrina alfa4/metabolismo , Células-Tronco Mesenquimais/citologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Western Blotting , Hipóxia Celular , Linhagem Celular , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina alfa4/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Gravidez , Piridinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA