Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056929

RESUMO

Exergy analysis evaluates the efficiency of system components by quantifying the rate of entropy generation. In general, the exergy destruction rate or irreversibility rate was directly obtained through the exergy balance equation. However, this method cannot determine the origin of the component's entropy generation rate, which is a very important factor in system design and improvement. In this study, a thorough energy, exergy, and thermoeconomic analysis of a proton-exchange membrane fuel cell (PEMFC) was performed, providing the heat transfer rate, entropy generation rate, and cost loss rate of each component. The irreversibility rate of each component was obtained by the Gouy-Stodola theorem. Detailed and extensive exergy and thermoeconomic analyses of the PEMFC system determined that water cooling units experience the greatest heat transfer among the components in the studied PEMFC system, resulting in the greatest irreversibility and, thus, the greatest monetary flow loss.

2.
Entropy (Basel) ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248161

RESUMO

The maximum temperature limit at which liquid boils explosively is referred to as the superheat limit of liquid. Through various experimental studies on the superheating limit of liquids, rapid evaporation of liquids has been observed at the superheating limit. This study explored the water nucleation process at the superheat limit achieved in micro-platinum wires using a molecular interaction model. According to the molecular interaction model, the nucleation rate and time delay at 576.2 K are approximately 2.1 × 1011/(µm3µs) and 5.7 ns, respectively. With an evaporation rate (116.0 m/s) much faster than that of hydrocarbons (14.0 m/s), these readings show that explosive boiling or rapid phase transition from liquid to vapor can occur at the superheat limit of water. Subsequent bubble growth after bubble nucleation was also considered.

3.
Ultrason Sonochem ; 21(4): 1512-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24529615

RESUMO

The velocity profile and radiation pressure field of a bubble cluster containing several thousand micro bubbles were obtained by solving the continuity and momentum equations for the bubbly mixture. In this study, the bubbles in the cluster are assumed to be generated and collapsed synchronously with an applied ultrasound. Numerical calculations describing the behavior of a micro bubble in a cluster included the effect of the radiation pressure field from the synchronizing motion of bubbles in the cluster. The radiation pressure generated from surrounding bubbles affects the bubble's behavior by increasing the effective mass of the bubble so that the bubble expands slowly to a smaller maximum size. The light pulse width and spectral radiance from a bubble in a cluster subjected to ultrasound were calculated by adding a radiation pressure term to the Keller-Miksis equation, and the values were compared to experimental values of the multibubble sonoluminescence condition. There was close agreement between the calculated and observed values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA