Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513592

RESUMO

The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.


Assuntos
Cílios , Dano ao DNA , Mebendazol , Xenopus laevis , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dano ao DNA/efeitos dos fármacos , Animais , Mebendazol/farmacologia , Humanos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Linhagem Celular Tumoral , Embrião não Mamífero/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
2.
Mol Cells ; 47(2): 100029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331199

RESUMO

Mitochondria are pivotal for energy regulation and are linked to cancer. Mitochondrial sirtuins, (Sirtuin) SIRT3, SIRT4, and SIRT5, play crucial roles in cancer metabolism. This review explores their impact on cellular processes, with a focus on the NAD+ interplay and the modulation of their enzymatic activities. The varied roles of SIRT3, SIRT4, and SIRT5 in metabolic adaptation and cancer are outlined, emphasizing their tumor suppressor or oncogenic nature. We propose new insights into sirtuin biology, and cancer therapeutics, suggesting an integrated proteomics and metabolomics approach for a comprehensive understanding of mitochondrial sirtuins in cancer.


Assuntos
Neoplasias , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Proteínas Mitocondriais/metabolismo , Metabolismo Energético
3.
World J Mens Health ; 42(1): 62-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171377

RESUMO

Cancer cells, which divide indefinitely and without control, are frequently exposed to various stress factors but manage to adapt and survive. The mechanisms by which cancer cells maintain cellular homeostasis and exploit stress conditions are not yet clear. Here, we elucidate the roles of diverse cellular metabolism and its regulatory mechanisms, highlighting the essential role of metabolism in cellular composition and signal transduction. Cells respond to various stresses, including DNA damage, energy stress, and oxidative stress, thereby causing metabolic alteration. We provide profound insight into the adaptive mechanisms employed by cancer cells to ensure their survival among internal and external stressors through a comprehensive analysis of the correlation between metabolic alterations and cellular stress. Furthermore, this research establishes a robust framework for the development of innovative therapeutic strategies that specifically target the cellular adaptations of cancer cells.

4.
Cell Metab ; 35(5): 887-905.e11, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075753

RESUMO

Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos , Transdução de Sinais , Biologia
5.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865221

RESUMO

Cellular exposure to free fatty acids (FFA) is implicated in the pathogenesis of obesity-associated diseases. However, studies to date have assumed that a few select FFAs are representative of broad structural categories, and there are no scalable approaches to comprehensively assess the biological processes induced by exposure to diverse FFAs circulating in human plasma. Furthermore, assessing how these FFA- mediated processes interact with genetic risk for disease remains elusive. Here we report the design and implementation of FALCON (Fatty Acid Library for Comprehensive ONtologies) as an unbiased, scalable and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids (MUFAs) with a distinct lipidomic profile associated with decreased membrane fluidity. Furthermore, we developed a new approach to prioritize genes that reflect the combined effects of exposure to harmful FFAs and genetic risk for type 2 diabetes (T2D). Importantly, we found that c-MAF inducing protein (CMIP) protects cells from exposure to FFAs by modulating Akt signaling and we validated the role of CMIP in human pancreatic beta cells. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism. Highlights: FALCON (Fatty Acid Library for Comprehensive ONtologies) enables multimodal profiling of 61 free fatty acids (FFAs) to reveal 5 FFA clusters with distinct biological effectsFALCON is applicable to many and diverse cell typesA subset of monounsaturated FAs (MUFAs) equally or more toxic than canonical lipotoxic saturated FAs (SFAs) leads to decreased membrane fluidityNew approach prioritizes genes that represent the combined effects of environmental (FFA) exposure and genetic risk for diseaseC-Maf inducing protein (CMIP) is identified as a suppressor of FFA-induced lipotoxicity via Akt-mediated signaling.

6.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902014

RESUMO

Gamma-aminobutyric acid (GABA) plays a crucial role in signal transduction and can function as a neurotransmitter. Although many studies have been conducted on GABA in brain biology, the cellular function and physiological relevance of GABA in other metabolic organs remain unclear. Here, we will discuss recent advances in understanding GABA metabolism with a focus on its biosynthesis and cellular functions in other organs. The mechanisms of GABA in liver biology and disease have revealed new ways to link the biosynthesis of GABA to its cellular function. By reviewing what is known about the distinct effects of GABA and GABA-mediated metabolites in physiological pathways, we provide a framework for understanding newly identified targets regulating the damage response, with implications for ameliorating metabolic diseases. With this review, we suggest that further research is necessary to develop GABA's beneficial and toxic effects on metabolic disease progression.


Assuntos
Transdução de Sinais , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo
7.
Int J Biol Macromol ; 231: 123577, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758763

RESUMO

Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Camundongos , Peróxido de Hidrogênio/metabolismo , Ligantes , Necrose , Ácido Láctico , Microambiente Tumoral
8.
Nat Commun ; 13(1): 5877, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198703

RESUMO

Hypoplastic left heart syndrome (HLHS) is characterized by underdevelopment of left sided structures including the ventricle, valves, and aorta. Prevailing paradigm suggests that HLHS is a multigenic disease of co-occurring phenotypes. Here, we report that zebrafish lacking two orthologs of the RNA binding protein RBFOX2, a gene linked to HLHS in humans, display cardiovascular defects overlapping those in HLHS patients including ventricular, valve, and aortic deficiencies. In contrast to current models, we demonstrate that these structural deficits arise secondary to impaired pump function as these phenotypes are rescued when Rbfox is specifically expressed in the myocardium. Mechanistically, we find diminished expression and alternative splicing of sarcomere and mitochondrial components that compromise sarcomere assembly and mitochondrial respiration, respectively. Injection of human RBFOX2 mRNA restores cardiovascular development in rbfox mutant zebrafish, while HLHS-linked RBFOX2 variants fail to rescue. This work supports an emerging paradigm for HLHS pathogenesis that centers on myocardial intrinsic defects.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Animais , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/patologia , Miocárdio/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Toxicol Res ; 38(4): 545-555, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277368

RESUMO

Natural killer (NK) cells are a part of the innate immune system and represent the first line of defense against infections and tumors. NK cells can eliminate tumor cells without major histocompatibility restriction and are independent of the expression of tumor-associated antigens. Therefore, they are considered an emerging tool for cancer immunotherapy. However, the general toxicity and biodistribution of NK cells after transplantation remain to be understood. This study was conducted to evaluate the general toxicity and biodistribution of human NK cells after single or repeated intravenous dosing in severely combined immunodeficient (SCID) mice. There were no test item-related toxicological changes in single and repeated administration groups. The no observed adverse effect level of human NK cells was 2 × 107 cells/head for both male and female SCID mice. Results from the biodistribution study showed that human NK cells were mainly distributed in the lungs, and a small number of the cells were detected in the liver, heart, spleen, and kidney of SCID mice, in both the single and repeated dose groups. Additionally, human NK cells were completely eliminated from all organs of the mice in the single dose group on day 7, while the cells persisted in mice in the repeated dose group until day 64. In conclusion, transplantation of human NK cells in SCID mice had no toxic effects. The cells were mainly distributed in the lungs and completely disappeared from the body over time after single or repeated intravenous administration.

10.
Front Cell Dev Biol ; 9: 734950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660591

RESUMO

Extracellular vesicles (EVs) are membranous structures containing bioactive molecules, secreted by most cells into the extracellular environment. EVs are classified by their biogenesis mechanisms into two major subtypes: ectosomes (enriched in large EVs; lEVs), budding directly from the plasma membrane, which is common in both prokaryotes and eukaryotes, and exosomes (enriched in small EVs; sEVs) generated through the multivesicular bodies via the endomembrane system, which is unique to eukaryotes. Even though recent proteomic analyses have identified key proteins associated with EV subtypes, there has been no systematic analysis, thus far, to support the general validity and utility of current EV subtype separation methods, still largely dependent on physical properties, such as vesicular size and sedimentation. Here, we classified human EV proteomic datasets into two main categories based on distinct centrifugation protocols commonly used for isolating sEV or lEV fractions. We found characteristic, evolutionarily conserved profiles of sEV and lEV proteins linked to their respective biogenetic origins. This may suggest that the evolutionary trajectory of vesicular proteins may result in a membership bias toward specific EV subtypes. Protein-protein interaction (PPI) network analysis showed that vesicular proteins formed distinct clusters with proteins in the same EV fraction, providing evidence for the existence of EV subtype-specific protein recruiters. Moreover, we identified functional modules enriched in each fraction, including multivesicular body sorting for sEV, and mitochondria cellular respiration for lEV proteins. Our analysis successfully captured novel features of EVs embedded in heterogeneous proteomics studies and suggests specific protein markers and signatures to be used as quality controllers in the isolation procedure for subtype-enriched EV fractions.

11.
Mol Cell ; 81(18): 3708-3730, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547235

RESUMO

Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cromatina/metabolismo , Doença , Metabolismo Energético/fisiologia , Saúde , Homeostase/fisiologia , Humanos , Imunidade/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Doenças Metabólicas/fisiopatologia , Metabolômica/métodos , Microbiota/fisiologia
12.
Cell Rep ; 36(2): 109345, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260923

RESUMO

Upon nutrient stimulation, pre-adipocytes undergo differentiation to transform into mature adipocytes capable of storing nutrients as fat. We profiled cellular metabolite consumption to identify early metabolic drivers of adipocyte differentiation. We find that adipocyte differentiation raises the uptake and consumption of numerous amino acids. In particular, branched-chain amino acid (BCAA) catabolism precedes and promotes peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of adipogenesis. In early adipogenesis, the mitochondrial sirtuin SIRT4 elevates BCAA catabolism through the activation of methylcrotonyl-coenzyme A (CoA) carboxylase (MCCC). MCCC supports leucine oxidation by catalyzing the carboxylation of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA. Sirtuin 4 (SIRT4) expression is decreased in adipose tissue of numerous diabetic mouse models, and its expression is most correlated with BCAA enzymes, suggesting a potential role for SIRT4 in adipose pathology through the alteration of BCAA metabolism. In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.


Assuntos
Adipogenia , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Mitocondriais/metabolismo , Sirtuínas/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
13.
J Biol Chem ; 296: 100397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571527

RESUMO

Since the discovery of the prolyl hydroxylases domain (PHD) proteins and their canonical hypoxia-inducible factor (HIF) substrate two decades ago, a number of in vitro hydroxylation (IVH) assays for PHD activity have been developed to measure the PHD-HIF interaction. However, most of these assays either require complex proteomics mass spectrometry methods that rely on the specific PHD-HIF interaction or require the handling of radioactive material, as seen in the most commonly used assay measuring [14C]O2 release from labeled [14C]α-ketoglutarate. Here, we report an alternative rapid, cost-effective assay in which the consumption of α-ketoglutarate is monitored by its derivatization with 2,4-dinitrophenylhydrazine (2,4-DNPH) followed by treatment with concentrated base. We extensively optimized this 2,4-DNPH α-ketoglutarate assay to maximize the signal-to-noise ratio and demonstrated that it is robust enough to obtain kinetic parameters of the well-characterized PHD2 isoform comparable with those in published literature. We further showed that it is also sensitive enough to detect and measure the IC50 values of pan-PHD inhibitors and several PHD2 inhibitors in clinical trials for chronic kidney disease (CKD)-induced anemia. Given the efficiency of this assay coupled with its multiwell format, the 2,4-DNPH α-KG assay may be adaptable to explore non-HIF substrates of PHDs and potentially to high-throughput assays.


Assuntos
Colorimetria/métodos , Prolina Dioxigenases do Fator Induzível por Hipóxia/análise , Ácidos Cetoglutáricos/análise , Fenil-Hidrazinas/química , Ensaios Enzimáticos/métodos , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/química , Cinética , Especificidade por Substrato
14.
Cell ; 183(7): 1848-1866.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301708

RESUMO

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.


Assuntos
Imunidade , Neoplasias/imunologia , Neoplasias/metabolismo , Obesidade/metabolismo , Microambiente Tumoral , Adiposidade , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Cinética , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Análise de Componente Principal , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteômica
15.
Cell Metab ; 32(2): 215-228.e7, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663458

RESUMO

Rapid alterations in cellular metabolism allow tissues to maintain homeostasis during changes in energy availability. The central metabolic regulator acetyl-CoA carboxylase 2 (ACC2) is robustly phosphorylated during cellular energy stress by AMP-activated protein kinase (AMPK) to relieve its suppression of fat oxidation. While ACC2 can also be hydroxylated by prolyl hydroxylase 3 (PHD3), the physiological consequence thereof is poorly understood. We find that ACC2 phosphorylation and hydroxylation occur in an inverse fashion. ACC2 hydroxylation occurs in conditions of high energy and represses fatty acid oxidation. PHD3-null mice demonstrate loss of ACC2 hydroxylation in heart and skeletal muscle and display elevated fatty acid oxidation. Whole body or skeletal muscle-specific PHD3 loss enhances exercise capacity during an endurance exercise challenge. In sum, these data identify an unexpected link between AMPK and PHD3, and a role for PHD3 in acute exercise endurance capacity and skeletal muscle metabolism.


Assuntos
Gorduras/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Linhagem Celular , Tolerância ao Exercício , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oxirredução
16.
Cancer Res ; 80(6): 1258-1267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767628

RESUMO

Glioblastoma (GBM) is increasingly recognized as a disease involving dysfunctional cellular metabolism. GBMs are known to be complex heterogeneous systems containing multiple distinct cell populations and are supported by an aberrant network of blood vessels. A better understanding of GBM metabolism, its variation with respect to the tumor microenvironment, and resulting regional changes in chemical composition is required. This may shed light on the observed heterogeneous drug distribution, which cannot be fully described by limited or uneven disruption of the blood-brain barrier. In this work, we used mass spectrometry imaging (MSI) to map metabolites and lipids in patient-derived xenograft models of GBM. A data analysis workflow revealed that distinctive spectral signatures were detected from different regions of the intracranial tumor model. A series of long-chain acylcarnitines were identified and detected with increased intensity at the tumor edge. A 3D MSI dataset demonstrated that these molecules were observed throughout the entire tumor/normal interface and were not confined to a single plane. mRNA sequencing demonstrated that hallmark genes related to fatty acid metabolism were highly expressed in samples with higher acylcarnitine content. These data suggest that cells in the core and the edge of the tumor undergo different fatty acid metabolism, resulting in different chemical environments within the tumor. This may influence drug distribution through changes in tissue drug affinity or transport and constitute an important consideration for therapeutic strategies in the treatment of GBM. SIGNIFICANCE: GBM tumors exhibit a metabolic gradient that should be taken into consideration when designing therapeutic strategies for treatment.See related commentary by Tan and Weljie, p. 1231.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Xenoenxertos , Humanos , Espectrometria de Massas , Microambiente Tumoral
17.
Cell Rep ; 22(8): 1945-1955, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466723

RESUMO

Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylase downregulated in aging and age-associated diseases such as cancer and neurodegeneration and in high-fat diet (HFD)-induced metabolic disorders. Here, we performed a small-molecule screen and identified an unexpected metabolic vulnerability associated with SIRT3 loss. Azaserine, a glutamine analog, was the top compound that inhibited growth and proliferation of cells lacking SIRT3. Using stable isotope tracing of glutamine, we observed its increased incorporation into de novo nucleotide synthesis in SIRT3 knockout (KO) cells. Furthermore, we found that SIRT3 KO cells upregulated the diversion of glutamine into de novo nucleotide synthesis through hyperactive mTORC1 signaling. Overexpression of SIRT3 suppressed mTORC1 and growth in vivo in a xenograft tumor model of breast cancer. Thus, we have uncovered a metabolic vulnerability of cells with SIRT3 loss by using an unbiased small-molecule screen.


Assuntos
Nucleotídeos/biossíntese , Sirtuína 3/deficiência , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Azasserina/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Camundongos Nus , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Cancer Res ; 78(5): 1184-1199, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29259012

RESUMO

The prolyl hydroxylase domain-containing proteins (PHD1-3) and the asparaginyl hydroxlyase factor inhibiting HIF (FIH) are oxygen sensors for hypoxia-inducible factor-driven transcription of hypoxia-induced genes, but whether these sensors affect oxygen-dependent epigenetic regulation more broadly is not known. Here, we show that FIH exerts an additional role as an oxygen sensor in epigenetic control by the histone lysine methyltransferases G9a and GLP. FIH hydroxylated and inhibited G9a and GLP under normoxia. When the FIH reaction was limited under hypoxia, G9a and GLP were activated and repressed metastasis suppressor genes, thereby triggering cancer cell migration and peritoneal dissemination of ovarian cancer xenografts. In clinical specimens of ovarian cancer, expression of FIH and G9a were reciprocally associated with patient outcomes. We also identified mutations of FIH target motifs in G9a and GLP, which exhibited excessive H3K9 methylation and facilitated cell invasion. This study provides insight into a new function of FIH as an upstream regulator of oxygen-dependent chromatin remodeling. It also implies that the FIH-G9a/GLP pathway could be a potential target for inhibiting hypoxia-induced cancer metastasis.Significance: These findings deepen understanding of oxygen-dependent gene regulation and cancer metastasis in response to hypoxia. Cancer Res; 78(5); 1184-99. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Oxigenases de Função Mista/metabolismo , Neoplasias Ovarianas/patologia , Oxigênio/metabolismo , Neoplasias Peritoneais/secundário , Proteínas Repressoras/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Epigênese Genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Hidroxilação , Hipóxia , Camundongos , Oxigenases de Função Mista/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Prognóstico , Proteínas Repressoras/genética , Transcrição Gênica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Discov ; 7(12): 1450-1463, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28963352

RESUMO

Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills NF1-mutant tumors by triggering catastrophic oxidative stress. Specifically, we show that mTOR and HDAC inhibitors kill aggressive nervous system malignancies and shrink tumors in vivo by converging on the TXNIP/thioredoxin antioxidant pathway, through cooperative effects on chromatin and transcription. Accordingly, TXNIP triggers cell death by inhibiting thioredoxin and activating apoptosis signal-regulating kinase 1 (ASK1). Moreover, this drug combination also kills NF1-mutant and KRAS-mutant non-small cell lung cancers. Together, these studies identify a promising therapeutic combination for several currently untreatable malignancies and reveal a protective nodal point of convergence between these important epigenetic and oncogenic enzymes.Significance: There are no effective therapies for NF1- or RAS-mutant cancers. We show that combined mTOR/HDAC inhibitors kill these RAS-driven tumors by causing catastrophic oxidative stress. This study identifies a promising therapeutic combination and demonstrates that selective enhancement of oxidative stress may be more broadly exploited for developing cancer therapies. Cancer Discov; 7(12); 1450-63. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.


Assuntos
Proteínas de Transporte/genética , Inibidores de Histona Desacetilases/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Estresse Oxidativo , Transdução de Sinais
20.
Science ; 358(6365): 941-946, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29025995

RESUMO

Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass.


Assuntos
Amônia/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Glutamato Desidrogenase/metabolismo , Aminação , Animais , Ácido Aspártico/metabolismo , Biocatálise , Proliferação de Células , Feminino , Glutamato Desidrogenase/genética , Humanos , Células MCF-7 , Camundongos , Prolina/metabolismo , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA