Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(4): 137, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38682209

RESUMO

Most pancreatic cancers are pancreatic ductal adenocarcinomas. This is an extremely lethal disease with poor prognosis and almost no treatment choices. Considering the profound role of the pancreas in the human body, malfunction of this organ can significantly affect quality of life. Although multiple metabolic pathways are altered in cancer cells, certain metabolic gene signatures may be critical for immunotherapy. The reprogrammed metabolism of glucose, amino acids, and lipids can nourish the tumor microenvironment (TME). Previous studies have also shown that reprogrammed metabolism influences immune responses. Tumor-infiltrating immune cells in the TME can adapt their metabolism to blunt the immune system, leading to immunosuppression and tumor progression. The identification of metabolism-related genes (MRGs) associated with immune reactions in pancreatic cancer may lead to improved treatments. This review highlights the characteristics of MRGs in pancreatic cancer and suggests that enhanced anti-cancer therapies could be used to overcome resistance to immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Imunoterapia/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
2.
J Med Virol ; 95(12): e29309, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100632

RESUMO

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/prevenção & controle , RNA Mensageiro/genética , Proteínas E7 de Papillomavirus/genética , Camundongos Endogâmicos C57BL , Vacinação/métodos , Imunização , Neoplasias do Colo do Útero/prevenção & controle
3.
Pharmaceutics ; 15(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37631279

RESUMO

Lipid nanoparticles (LNPs), composed of ionized lipids, helper lipids, and cholesterol, provide general therapeutic effects by facilitating intracellular transport and avoiding endosomal compartments. LNP-based drug delivery has great potential for the development of novel gene therapies and effective vaccines. Solid lipid nanoparticles (SLNs) are derived from physiologically acceptable lipid components and remain robust at body temperature, thereby providing high structural stability and biocompatibility. By enhancing drug delivery through blood vessels, SLNs have been used to improve the efficacy of cancer treatments. Breast cancer, the most common malignancy in women, has a declining mortality rate but remains incurable. Recently, as an anticancer drug delivery system, SLNs have been widely used in breast cancer, improving the therapeutic efficacy of drugs. In this review, we discuss the latest advances of SLNs for breast cancer treatment and their potential in clinical use.

4.
Front Biosci (Landmark Ed) ; 28(3): 47, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-37005762

RESUMO

Ovarian cancer (OC) is characterized by high mortality rates owing to late diagnosis and resistance to chemotherapy. Autophagy and metabolism play essential roles in the pathological process of cancer and have recently been proposed as potential targets for anticancer therapies. Autophagy is responsible for the catabolic clearance of functionally misfolded proteins and plays different roles depending on the stage and type of cancer. Thus, understanding and controlling autophagy is relevant for treating cancer. Autophagy intermediates can communicate with each other by providing substrates for glucose, amino acid, and lipid metabolism. Metabolites and metabolic regulatory genes modulate autophagy and influence the immune response. Therefore, autophagy and the functional manipulation of metabolism during starvation or overnutrition are being investigated as potential therapeutic targets. This review discusses the role of autophagy and metabolism in OC and highlights effective therapeutic strategies targeting these processes.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Aminoácidos/metabolismo , Glucose/metabolismo , Autofagia/fisiologia
5.
Curr Issues Mol Biol ; 45(2): 1233-1249, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826026

RESUMO

Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.

6.
Epigenomes ; 7(1)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36810560

RESUMO

Breast cancer remains a common cause of cancer-related death in women. Therefore, further studies are necessary for the comprehension of breast cancer and the revolution of breast cancer treatment. Cancer is a heterogeneous disease that results from epigenetic alterations in normal cells. Aberrant epigenetic regulation is strongly associated with the development of breast cancer. Current therapeutic approaches target epigenetic alterations rather than genetic mutations due to their reversibility. The formation and maintenance of epigenetic changes depend on specific enzymes, including DNA methyltransferases and histone deacetylases, which are promising targets for epigenetic-based therapy. Epidrugs target different epigenetic alterations, including DNA methylation, histone acetylation, and histone methylation, which can restore normal cellular memory in cancerous diseases. Epigenetic-targeted therapy using epidrugs has anti-tumor effects on malignancies, including breast cancer. This review focuses on the importance of epigenetic regulation and the clinical implications of epidrugs in breast cancer.

7.
BMC Cancer ; 22(1): 1041, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199130

RESUMO

BACKGROUND: Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. METHODS: We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. RESULTS: CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. CONCLUSIONS: This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models.


Assuntos
Vacinas Anticâncer , Melanoma , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Interferon gama/genética , Sítios Internos de Entrada Ribossomal , Melanoma/genética , Melanoma/terapia , Camundongos , RNA Viral/genética
8.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743249

RESUMO

Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial-mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Neoplasias da Mama/genética , Epigênese Genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Linfonodos/patologia , Metástase Neoplásica/patologia , Segunda Neoplasia Primária/patologia , Microambiente Tumoral
9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216285

RESUMO

Ovarian cancer is the most malignant gynecological tumor. Previous studies have reported that metabolic alterations resulting from deregulated lipid metabolism promote ovarian cancer aggressiveness. Lipid metabolism involves the oxidation of fatty acids, which leads to energy generation or new lipid metabolite synthesis. The upregulation of fatty acid synthesis and related signaling promote tumor cell proliferation and migration, and, consequently, lead to poor prognosis. Fatty acid-mediated lipid metabolism in the tumor microenvironment (TME) modulates tumor cell immunity by regulating immune cells, including T cells, B cells, macrophages, and natural killer cells, which play essential roles in ovarian cancer cell survival. Here, the types and sources of fatty acids and their interactions with the TME of ovarian cancer have been reviewed. Additionally, this review focuses on the role of fatty acid metabolism in tumor immunity and suggests that fatty acid and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Ácidos Graxos , Humanos , Metabolismo dos Lipídeos , Neoplasias Ovarianas/patologia , Microambiente Tumoral
10.
Clin Cancer Res ; 28(1): 187-200, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426440

RESUMO

PURPOSE: Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the gastrointestinal tract, with mutant succinate dehydrogenase (SDH) subunits (A-D) comprising less than 7.5% (i.e., 150-200/year) of new cases annually in the United States. Contrary to GISTs harboring KIT or PDGFRA mutations, SDH-mutant GISTs affect adolescents/young adults, often metastasize, and are frequently resistant to tyrosine kinase inhibitors (TKI). Lack of human models for any SDH-mutant tumors, including GIST, has limited molecular characterization and drug discovery. EXPERIMENTAL DESIGN: We describe methods for establishing novel patient-derived SDH-mutant (mSDH) GIST models and interrogated the efficacy of temozolomide on these tumor models in vitro and in clinical trials of patients with mSDH GIST. RESULTS: Molecular and metabolic characterization of our patient-derived mSDH GIST models revealed that these models recapitulate the transcriptional and metabolic hallmarks of parent tumors and SDH deficiency. We further demonstrate that temozolomide elicits DNA damage and apoptosis in our mSDH GIST models. Translating our in vitro discovery to the clinic, a cohort of patients with SDH-mutant GIST treated with temozolomide (n = 5) demonstrated a 40% objective response rate and 100% disease control rate, suggesting that temozolomide represents a promising therapy for this subset of GIST. CONCLUSIONS: We report the first methods to establish patient-derived mSDH tumor models, which can be readily employed for understanding patient-specific tumor biology and treatment strategies. We also demonstrate that temozolomide is effective in patients with mSDH GIST who are refractory to existing chemotherapeutic drugs (namely, TKIs) in clinic for GISTs, bringing a promising treatment option for these patients to clinic.See related commentary by Blakely et al., p. 3.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Adolescente , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Succinato Desidrogenase/metabolismo , Adulto Jovem
11.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948343

RESUMO

Ovarian tissue cryopreservation is the only option for preserving fertility in adult and prepubertal cancer patients who require immediate chemotherapy or do not want ovarian stimulation. However, whether ovarian tissue cryopreservation can ameliorate follicular damage and inhibit the production of reactive oxygen species in cryopreserved ovarian tissue remains unclear. Oxidative stress is caused by several factors, such as UV exposure, obesity, age, oxygen, and cryopreservation, which affect many of the physiological processes involved in reproduction, from maturation to fertilization, embryonic development, and pregnancy. Here, freezing and thawing solutions were pre-treated with N-acetylcysteine (NAC) and klotho protein upon the freezing of ovarian tissue. While both NAC and klotho protein suppressed DNA fragmentation by scavenging reactive oxygen species, NAC induced apoptosis and tissue damage in mouse ovarian tissue. Klotho protein inhibited NAC-induced apoptosis and restored cellular tissue damage, suggesting that klotho protein may be an effective antioxidant for the cryopreservation of ovarian tissue.


Assuntos
Criopreservação , Preservação da Fertilidade/métodos , Proteínas Klotho/metabolismo , Ovário/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio
12.
Mol Cancer Ther ; 20(10): 2035-2048, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376580

RESUMO

Gastrointestinal stromal tumor (GIST) is commonly driven by oncogenic KIT mutations that are effectively targeted by imatinib (IM), a tyrosine kinase inhibitor (TKI). However, IM does not cure GIST, and adjuvant therapy only delays recurrence in high-risk tumors. We hypothesized that GIST contains cells with primary IM resistance that may represent a reservoir for disease persistence. Here, we report a subpopulation of CD34+KITlow human GIST cells that have intrinsic IM resistance. These cells possess cancer stem cell-like expression profiles and behavior, including self-renewal and differentiation into CD34+KIThigh progeny that are sensitive to IM treatment. We also found that TKI treatment of GIST cell lines led to induction of stem cell-associated transcription factors (OCT4 and NANOG) and concomitant enrichment of the CD34+KITlow cell population. Using a data-driven approach, we constructed a transcriptomic-oncogenic map (Onco-GPS) based on the gene expression of 134 GIST samples to define pathway activation during GIST tumorigenesis. Tumors with low KIT expression had overexpression of cancer stem cell gene signatures consistent with our in vitro findings. Additionally, these tumors had activation of the Gas6/AXL pathway and NF-κB signaling gene signatures. We evaluated these targets in vitro and found that primary IM-resistant GIST cells were effectively targeted with either single-agent bemcentinib (AXL inhibitor) or bardoxolone (NF-κB inhibitor), as well as with either agent in combination with IM. Collectively, these findings suggest that CD34+KITlow cells represent a distinct, but targetable, subpopulation in human GIST that may represent a novel mechanism of primary TKI resistance, as well as a target for overcoming disease persistence following TKI therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 27(19): 5334-5342, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34326133

RESUMO

PURPOSE: Gastrointestinal stromal tumors (GIST) commonly arise in different regions of the stomach and are driven by various mutations (most often in KIT, PDGFRA, and SDHx). We hypothesized that the anatomic location of gastric GIST is associated with unique genomic profiles and distinct driver mutations. EXPERIMENTAL DESIGN: We compared KIT versus non-KIT status with tumor location within the National Cancer Database (NCDB) for 2,418 patients with primary gastric GIST. Additionally, we compiled an international cohort (TransAtlantic GIST Collaborative, TAGC) of 236 patients and reviewed sequencing results, cross-sectional imaging, and operative reports. Subgroup analyses were performed for tumors located proximally versus distally. Risk factors for KIT versus non-KIT tumors were identified using multivariate regression analysis. A random forest machine learning model was then developed to determine feature importance. RESULTS: Within the NCDB cohort, non-KIT mutants dominated distal tumor locations (P < 0.03). Proximal GIST were almost exclusively KIT mutant (96%) in the TAGC cohort, whereas 100% of PDGFRA and SDH-mutant GIST occurred in the distal stomach. On multivariate regression analysis, tumor location was associated with KIT versus non-KIT mutations. Using random forest machine learning analysis, stomach location was the most important feature for predicting mutation status. CONCLUSIONS: We provide the first evidence that the mutational landscape of gastric GIST is related to tumor location. Proximal gastric GIST are overwhelmingly KIT mutant, irrespective of morphology or age, whereas distal tumors display non-KIT genomic diversity. Anatomic location of gastric GIST may therefore provide immediate guidance for clinical treatment decisions and selective confirmatory genomic testing when resources are limited.


Assuntos
Tumores do Estroma Gastrointestinal , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Estômago/patologia
14.
Oncogenesis ; 10(2): 13, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33568624

RESUMO

Cancer-associated fibroblasts (CAFs) are the most abundant cells in the tumor microenvironment. Crosstalk between tumor cells and CAFs contributes to tumor survival in most epithelial cancers. Recently, utilizing gastrointestinal stromal tumor (GIST) as a model for sarcomas, we identified paracrine networks by which CAFs promote tumor progression and metastasis. However, the mechanisms by which CAFs arise in sarcomas remain unclear. Here, RNA sequencing analysis revealed that transforming growth factor-ß1 (TGF-ß1) is highly expressed in both tumor cells and CAFs. To determine the functional role of TGF-ß1, we treated normal gastric fibroblasts (GFs) with recombinant TGF-ß1, which caused the GFs to adopt a more stellate morphology, as well as increased the mRNA expression of CAF-mediated genes (CCL2, RAB3B, and TNC) and genes encoding fibroblast growth factors (FGFs). Moreover, while either GIST or CAF conditioned media enhanced the transition from GFs to CAFs, a TGF-ß1-blocking antibody attenuated this effect. Transwell migration assays revealed that the TGF-ß1-mediated transition from GFs to CAFs enhanced tumor cell migration. This migratory effect was abrogated by an anti-TGF-ß1 antibody, suggesting that TGF-ß1 secreted from GIST cells or CAFs is associated with GIST migration via GF-to-CAF transition. In addition, the murine spleen-to-liver metastasis model showed that GF pre-treated with TGF-ß1 promoted GIST metastasis. Collectively, these findings reveal unappreciated crosstalk among tumor cells, CAFs, and normal resident fibroblasts in the stroma of sarcomas, which enhances a GF-to-CAF transition associated with tumor migration and metastasis.

15.
Oncogene ; 40(11): 1957-1973, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603171

RESUMO

Targeted therapies for gastrointestinal stromal tumor (GIST) are modestly effective, but GIST cannot be cured with single agent tyrosine kinase inhibitors. In this study, we sought to identify new therapeutic targets in GIST by investigating the tumor microenvironment. Here, we identified a paracrine signaling network by which cancer-associated fibroblasts (CAFs) drive GIST growth and metastasis. Specifically, CAFs isolated from human tumors were found to produce high levels of platelet-derived growth factor C (PDGFC), which activated PDGFC-PDGFRA signal transduction in GIST cells that regulated the expression of SLUG, an epithelial-mesenchymal transition (EMT) transcription factor and downstream target of PDGFRA signaling. Together, this paracrine induce signal transduction cascade promoted tumor growth and metastasis in vivo. Moreover, in metastatic GIST patients, SLUG expression positively correlated with tumor size and mitotic index. Given that CAF paracrine signaling modulated GIST biology, we directly targeted CAFs with a dual PI3K/mTOR inhibitor, which synergized with imatinib to increase tumor cell killing and in vivo disease response. Taken together, we identified a previously unappreciated cellular target for GIST therapy in order to improve disease control and cure rates.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Linfocinas/genética , Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição da Família Snail/genética , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Humanos , Metástase Neoplásica , Comunicação Parácrina/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Microambiente Tumoral/efeitos dos fármacos
16.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008642

RESUMO

Precision oncology involves an innovative personalized treatment strategy for each cancer patient that provides strategies and options for cancer treatment. Currently, personalized cancer medicine is primarily based on molecular matching. Next-generation sequencing and related technologies, such as single-cell whole-transcriptome sequencing, enable the accurate elucidation of the genetic landscape in individual cancer patients and consequently provide clinical benefits. Furthermore, advances in cancer organoid models that represent genetic variations and mutations in individual cancer patients have direct and important clinical implications in precision oncology. This review aimed to discuss recent advances, clinical potential, and limitations of genomic profiling and the use of organoids in breast and ovarian cancer. We also discuss the integration of genomic profiling and organoid models for applications in cancer precision medicine.


Assuntos
Neoplasias da Mama/genética , Variação Genética/genética , Organoides/crescimento & desenvolvimento , Neoplasias Ovarianas/genética , Feminino , Perfil Genético , Genômica/métodos , Humanos , Oncologia/métodos , Medicina de Precisão/métodos
17.
JAMA Netw Open ; 3(9): e2013565, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986105

RESUMO

Importance: Gastrointestinal stromal tumor (GIST) is frequently driven by oncogenic KIT variations. Imatinib targeting of KIT marked a new era in GIST treatment and ushered in precision oncological treatment for all solid malignant neoplasms. However, studies on the molecular biological traits of GIST have found that tumors respond differentially to imatinib dosage based on the KIT exon with variation. Despite this knowledge, few patients undergo genetic testing at diagnosis, and empirical imatinib therapy remains routine. Barriers to genetic profiling include concerns about the cost and utility of testing. Objective: To determine whether targeted gene testing (TGT) is a cost-effective diagnostic for patients with metastatic GIST from the US payer perspective. Design, Setting, and Participants: This economic evaluation developed a Markov model to compare the cost-effectiveness of TGT and tailored first-line therapy compared with empirical imatinib therapy among patients with a new diagnosis of metastatic GIST. The main health outcome, quality-adjusted life years (QALYs), and costs were obtained from the literature, and transitional probabilities were modeled from disease progression and survival estimates from randomized clinical trials of patients with metastatic GIST. Data analyses were conducted October 2019 to January 2020. Exposure: TGT and tailored first-line therapy. Main Outcomes and Measures: The primary outcome was QALYs and cost. Cost-effectiveness was defined using an incremental cost-effectiveness ratio, with an incremental cost-effectiveness ratio less than $100 000/QALY considered cost-effective. One-way and probabilistic sensitivity analyses were conducted to assess model stability. Results: Therapy directed by TGT was associated with an increase of 0.10 QALYs at a cost of $9513 compared with the empirical imatinib approach, leading to an incremental cost-effectiveness ratio of $92 100. These findings were sensitive to the costs of TGT, drugs, and health utility model inputs. Therapy directed by TGT remained cost-effective for genetic testing costs up to $3730. Probabilistic sensitivity analysis found that TGT-directed therapy was considered cost-effective 70% of the time. Conclusions and Relevance: These findings suggest that using genetic testing to match treatment of KIT variations to imatinib dosing is a cost-effective approach compared with empirical imatinib.


Assuntos
Tumores do Estroma Gastrointestinal , Testes Genéticos , Mesilato de Imatinib , Proteínas Proto-Oncogênicas c-kit/genética , Antineoplásicos/economia , Antineoplásicos/farmacologia , Análise Custo-Benefício , Custos de Medicamentos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/economia , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Testes Genéticos/economia , Testes Genéticos/métodos , Humanos , Mesilato de Imatinib/economia , Mesilato de Imatinib/farmacologia , Cadeias de Markov , Metástase Neoplásica , Estadiamento de Neoplasias , Farmacogenética/métodos , Anos de Vida Ajustados por Qualidade de Vida
18.
Cell Metab ; 31(6): 1154-1172.e9, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492394

RESUMO

Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17ß-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17ß-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17ß-estradiol opposes this. In obese mice, estrone increases and 17ß-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17ß-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17ß-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17ß-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Pós-Menopausa/metabolismo , Pré-Menopausa/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Mol Cancer Ther ; 19(5): 1173-1182, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127469

RESUMO

Gastrointestinal stromal tumor (GIST), the most common sarcoma, is characterized by KIT protein overexpression, and tumors are frequently driven by oncogenic KIT mutations. Targeted inhibition of KIT revolutionized GIST therapy and ushered in the era of precision medicine for the treatment of solid malignancies. Here, we present the first use of a KIT-specific DNA aptamer for targeted labeling of GIST. We found that an anti-KIT DNA aptamer bound cells in a KIT-dependent manner and was highly specific for GIST cell labeling in vitro Functionally, the KIT aptamer bound extracellular KIT in a manner similar to KIT mAb staining, and was trafficked intracellularly in vitro The KIT aptamer bound dissociated primary human GIST cells in a mutation agnostic manner such that tumors with KIT and PDGFRA mutations were labeled. In addition, the KIT aptamer specifically labeled intact human GIST tissue ex vivo, as well as peritoneal xenografts in mice with high sensitivity. These results represent the first use of an aptamer-based method for targeted detection of GIST in vitro and in vivo.


Assuntos
Anticorpos Monoclonais/farmacologia , Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Animais , Apoptose , Aptâmeros de Nucleotídeos/genética , Proliferação de Células , Feminino , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
EBioMedicine ; 43: 201-210, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30975544

RESUMO

BACKGROUND: Bromodomain and extra-terminal inhibitors (BETi) have shown efficacy for the treatment of aggressive triple negative breast cancer (TNBC). However, BETi are plagued by a narrow therapeutic window as manifested by severe toxicities at effective doses. Therefore, it is a limitation to their clinical implementation in patient care. METHODS: The impact of vitamin C on the efficacy of small compounds including BETi was assessed by high-throughput screening. Co-treatment of TNBC by BETi especially JQ1 and vitamin C was evaluated in vitro and in vivo. FINDINGS: High-throughput screening revealed that vitamin C improves the efficacy of a number of structurally-unrelated BETi including JQ1, I-BET762, I-BET151, and CPI-203 in treating TNBC cells. The synergy between BETi and vitamin C is due to suppressed histone acetylation (H3ac and H4ac), which is in turn caused by upregulated histone deacetylase 1 (HDAC1) expression upon vitamin C addition. Treatment with JQ1 at lower doses together with vitamin C induces apoptosis and inhibits the clonogenic ability of cultured TNBC cells. Oral vitamin C supplementation renders a sub-therapeutic dose of JQ1 able to inhibit human TNBC xenograft growth and metastasis in mice. INTERPRETATION: Vitamin C expands the therapeutic window of BETi by sensitizing TNBC to BETi. Using vitamin C as a co-treatment, lower doses of BETi could be used to achieve an increased therapeutic index in patients, which will translate to a reduced side effect profile. FUND: University of Miami Sylvester Comprehensive Cancer Center, Bankhead Coley Cancer Research program (7BC10), Flight Attendant Medical Research Institute, and NIH R21CA191668 (to GW) and 1R56AG061911 (to CW and CHV).


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/administração & dosagem , Suplementos Nutricionais , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Acetilação , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Camundongos , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA