Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10410, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710917

RESUMO

Antireflection, vital in optoelectronics devices such as solar cells and photodetectors, reduces light reflection and increases absorption. Antireflective structures (ARS), a primary method by which to realize this effect, control the refractive index (RI) profile based on their shape. The antireflection efficiency depends on the refractive index profile, with the quintic RI profile being recognized as ideal for superior antireflection. However, fabricating nano-sized structures with a desired shape, particularly in silicon with a quintic RI profile, has been a challenge. In this study, we introduce a funnel-shaped silicon (Si) ARS with a quintic RI profile. Its antireflective properties are demonstrated through reflectance measurements and by an application to a photodetector surface. Compared to the film Si and cone-shaped ARS types, which are common structures to achieve antireflection, the funnel-shaped ARS showed reflectance of 4.24% at 760 nm, whereas those of the film Si and cone-shaped ARS were 32.8% and 10.6%, respectively. Photodetectors with the funnel-shaped ARS showed responsivity of 0.077 A/W at 950 nm, which is 19.54 times higher than that with the film Si and 2.45 times higher than that with the cone-shaped ARS.

2.
Nanoscale Adv ; 6(8): 2013-2025, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633052

RESUMO

Adhesion has attracted great interest in science and engineering especially in the field pertaining to nano-science because every form of physical contact is fundamentally a macroscopic observation of interactions between nano-asperities under the adhesion phenomenon. Despite its importance, no practical adhesion prediction model has been developed due to the complexity of examining contact between nano-asperities. Here, we scrutinized the contact phenomenon and developed a contact model, reflecting the physical sequence in which adhesion develops. For the first time ever, our model analyzes the adhesion force and contact properties, such as separation distance, contact location, actual contact area, and the physical deformation of the asperities, between rough surfaces. Through experiments using atomic force microscopy, we demonstrated a low absolute percentage error of 2.8% and 6.55% between the experimental and derived data for Si-Si and Mo-Mo contacts, respectively, and proved the accuracy and practicality of our model in the analysis of the adhesion phenomenon.

3.
ACS Sens ; 9(4): 1896-1905, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626402

RESUMO

With the escalating global awareness of air quality management, the need for continuous and reliable monitoring of toxic gases by using low-power operating systems has become increasingly important. One of which, semiconductor metal oxide gas sensors have received great attention due to their high/fast response and simple working mechanism. More specifically, self-heating metal oxide gas sensors, wherein direct thermal activation in the sensing material, have been sought for their low power-consuming characteristics. However, previous works have neglected to address the temperature distribution within the sensing material, resulting in inefficient gas response and prolonged response/recovery times, particularly due to the low-temperature regions. Here, we present a unique metal/metal oxide/metal (MMOM) nanowire architecture that conductively confines heat to the sensing material, achieving high uniformity in the temperature distribution. The proposed structure enables uniform thermal activation within the sensing material, allowing the sensor to efficiently react with the toxic gas. As a result, the proposed MMOM gas sensor showed significantly enhanced gas response (from 6.7 to 20.1% at 30 ppm), response time (from 195 to 17 s at 30 ppm), and limit of detection (∼1 ppm) when compared to those of conventional single-material structures upon exposure to carbon monoxide. Furthermore, the proposed work demonstrated low power consumption (2.36 mW) and high thermal durability (1500 on/off cycles), demonstrating its potential for practical applications in reliable and low-power operating gas sensor systems. These results propose a new paradigm for power-efficient and robust self-heating metal oxide gas sensors with potential implications for other fields requiring thermal engineering.


Assuntos
Gases , Nanofios , Óxidos , Nanofios/química , Gases/química , Gases/análise , Óxidos/química , Metais/química
4.
Small ; 20(2): e2304555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649204

RESUMO

Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3 mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50 nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1 ppm with an average response time of ≈15 s and distinguishable sensitivity to 1 ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.

5.
ACS Nano ; 17(23): 23649-23658, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039345

RESUMO

The high explosiveness of hydrogen gas in the air necessitates prompt detection in settings where hydrogen is used. For this reason, hydrogen sensors are required to offer rapid detection and possess superior sensing characteristics in terms of measurement range, linearity, selectivity, lifetime, and environment insensitivity according to the publicized protocol. However, previous approaches have only partially achieved the standardized requirements and have been limited in their capability to develop reliable materials for spatially accessible systems. Here, an electrical hydrogen sensor with an ultrafast response (∼0.6 s) satisfying all demands for hydrogen detection is demonstrated. Tailoring structural engineering based on the reaction kinetics of hydrogen and palladium, an optimized heating architecture that thermally activates fully suspended palladium (Pd) nanowires at a uniform temperature is designed. The developed Pd nanostructure, at a designated temperature distribution, rapidly reacts with hydrogen, enabling a hysteresis-free response from 0.1% to 10% and durable characteristics in mechanical shock and repetitive operation (>10,000 cycles). Moreover, the device selectively detects hydrogen without performance degradation in humid or carbon-based interfering gas circumstances. Finally, to verify spatial accessibility, the wireless hydrogen detection system has been demonstrated, detecting and reporting hydrogen leakage in real-time within just 1 s.

6.
Nat Commun ; 14(1): 460, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709346

RESUMO

With the exponential growth of the semiconductor industry, radiation-hardness has become an indispensable property of memory devices. However, implementation of radiation-hardened semiconductor memory devices inevitably requires various radiation-hardening technologies from the layout level to the system level, and such technologies incur a significant energy overhead. Thus, there is a growing demand for emerging memory devices that are energy-efficient and intrinsically radiation-hard. Here, we report a nanoelectromechanical non-volatile memory (NEM-NVM) with an ultra-low energy consumption and radiation-hardness. To achieve an ultra-low operating energy of less than 10 [Formula: see text], we introduce an out-of-plane electrode configuration and electrothermal erase operation. These approaches enable the NEM-NVM to be programmed with an ultra-low energy of 2.83 [Formula: see text]. Furthermore, due to its mechanically operating mechanisms and radiation-robust structural material, the NEM-NVM retains its superb characteristics without radiation-induced degradation such as increased leakage current, threshold voltage shift, and unintended bit-flip even after 1 Mrad irradiation.

7.
ACS Nano ; 16(8): 11957-11967, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621510

RESUMO

Palladium (Pd) has been drawing increasing attention as a hydrogen (H2) detecting material due to its highly selective sensitivity to H2. However, at H2 concentrations above 2%, Pd undergoes an inevitable phase transition, causing undesirable electrical and mechanical alterations. In particular, nonlinear gas response (ΔR/R0) that accompanies phase transition has been a great bottleneck for detecting H2 in high concentrations, which is especially important as there is a risk of explosion over 4% H2. Here, we propose a phase-transition-inhibited Pd nanowire H2 sensor that can detect up to 4% H2 with high linearity and high sensitivity. Based on the calculation of the change in free energy, we designed Pd nanowires that are highly adhered to the substrate to withstand the stress that leads to phase transition. We theoretically optimized the Pd nanowire dimensions using a finite element method simulation and then experimentally fabricated the proposed sensor by exploiting a developed nanofabrication method. The proposed sensor exhibits a high sensing linearity (98.9%) with high and stable sensitivity (ΔR/R0/[H2] = 875%·bar-1) over a full range of H2 concentrations (0.1-4%). Using the fabricated Pd sensors, we have successfully demonstrated a wireless sensor module that can detect H2 with high linearity, notifying real-time H2 leakage through remote communication. Overall, our work suggests a nanostructuring strategy for detecting H2 with a phase-transition-inhibited pure Pd H2 sensor with rigorous scientific exploration.

8.
Sci Rep ; 12(1): 2284, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145152

RESUMO

Recently, copper oxide (CuO) has drawn much attention as a promising material in visible light photodetection with its advantages in ease of nanofabrication. CuO allows a variety of nanostructures to be explored to enhance the optoelectrical performance such as photogenerated carriers scattering and bandgap engineering. However, previous researches neglect in-depth analysis of CuO's light interaction effects, restrictively using random orientation such as randomly arranged nanowires, single nanowires, and dispersed nanoparticles. Here, we demonstrate an ultra-high performance CuO visible light photodetector utilizing perfectly-aligned nanowire array structures. CuO nanowires with 300 nm-width critical dimension suppressed carrier transport in the dark state and enhanced the conversion of photons to carriers; additionally, the aligned arrangement of the nanowires with designed geometry improved the light absorption by means of the constructive interference effect. The proposed nanostructures provide advantages in terms of dark current, photocurrent, and response time, showing unprecedentedly high (state-of-the-art) optoelectronic performance, including high values of sensitivity (S = 172.21%), photo-responsivity (R = 16.03 A/W, λ = 535 nm), photo-detectivity (D* = 7.78 × 1011 Jones), rise/decay time (τr/τd = 0.31 s/1.21 s).

9.
ACS Appl Mater Interfaces ; 13(14): 16959-16967, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797217

RESUMO

Electrical circuits require ideal switches with low power consumption for future electronic applications. However, transistors, the most developed electrical switches available currently, have certain fundamental limitations such as increased leakage current and limited subthreshold swing. To overcome these limitations, micromechanical switches have been extensively studied; however, it is challenging to develop micromechanical switches with high endurance and low contact resistance. This study demonstrates highly reliable microelectromechanical switches using nanocomposites. Nanocomposites consisting of gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) are coated on contact electrodes as contact surfaces through a scalable and solution-based fabrication process. While deformable CNTs in the nanocomposite increase the effective contact area under mechanical loads, highly conductive Au NPs provide current paths with low contact resistance between CNTs. Given these advantages, the switches exhibit robust switching operations over 5 × 106 cycles under hot-switching conditions in air. The switches also show low contact resistance without subthreshold region, an extremely small leakage current, and a high on/off ratio.

10.
ACS Nano ; 14(12): 16813-16822, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33263256

RESUMO

This study proposes a reliable and self-powered hydrogen (H2) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H2 and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell. Since the degree of warping is determined by the concentration of H2 gas, a wide concentration range of H2 (0.1-4.0%) can be detected by measuring the self-generated electrical current of the photovoltaic cell without external power. The normalized output current changes are ∼1.5%, ∼2.8%, ∼3.5%, ∼5.0%, ∼21.5%, and 25.3% when the concentrations of H2 gas are 0.1%, 0.5%, 1.0%, 1.6%, 2%, and 4%, respectively. Moreover, because Pd is highly chemically reactive to H2 and also because there is no electrical current applied through Pd, the proposed sensor can avoid device failure due to the breakage of the Pd sensing material, resulting in high reliability, and can show high selectivity against various gases such as carbon monoxide, hydrogen sulfide, nitrogen dioxide, and water vapor. Finally, using only ambient visible light, the sensor was modularized to produce an alarm in the presence of H2 gas, verifying a potential always-on H2 gas monitoring application.

11.
Adv Mater ; 32(35): e1907082, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32253800

RESUMO

Recently, geometrically structured nanomaterials have received great attention due to their unique physical and chemical properties, which originate from the geometric variation in such materials. Indeed, the use of various geometrically structured nanomaterials has been actively reported in enhanced-performance devices in a wide range of applications. Recent significant progress in the development of geometrically structured nanomaterials and associated devices is summarized. First, a brief introduction of advanced nanofabrication methods that enable the fabrication of various geometrically structured nanomaterials is given, and then the performance enhancements achieved in devices utilizing these nanomaterials, namely, i) physical and gas nanosensors, ii) nanoelectromechanical devices, and iii) nanosieves are described. For the device applications, a systematic summary of their structures, working mechanisms, fabrication methods, and output performance is provided. Particular focus is given to how device performance can be enhanced through the geometric structures of the nanomaterials. Finally, perspectives on the development of novel nanomaterial structures and associated devices are presented.

12.
Small ; 16(13): e1906845, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32072747

RESUMO

Air suspension and alignment are fundamental requirements to make the best use of nanowires' unique properties; however, satisfying both requirements is very challenging due to the mechanical instability of air-suspended nanowires. Here, a perfectly aligned air-suspended nanowire array called "nanolene" is demonstrated, which has a high mechanical stability owing to a C-channel-shaped cross-section of the nanowires. The excellent mechanical stability is provided through geometrical modeling and finite element method simulations. The C-channel cross-section can be realized by top-down fabrication procedures, resulting in reliable demonstrations of the nanolenes with various materials and geometric parameters. The fabrication process provides large-area uniformity; therefore, nanolene can be considered as a 2D planar platform for 1D nanowire arrays. Thanks to the high mechanical stability of the proposed nanolene, perfectly aligned air-suspended nanowire arrays with an unprecedented length of 1 mm (aspect ratio ≈5100) are demonstrated. Since the nanolene can be used in an energy-efficient nanoheater, two energy-stringent sensors, namely, an air-flow sensor and a carbon monoxide gas sensor, are demonstrated. In particular, the gas sensor achieves sub-10 mW operations, which is a requirement for application in mobile phones. The proposed nanolene will pave the way to accelerate nanowire research and industrialization by providing reliable, high-performance nanowire devices.

13.
Nanoscale ; 11(35): 16317-16326, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31309962

RESUMO

Pd nanowire-based H2 sensors have attracted significant attention because of their superior sensing performance. However, when exposed to H2 concentrations of more than 2%, Pd experiences volume expansion over 10%, resulting in a significant amount of mechanical stress. Thus, exposure to such high H2 concentrations causes physical destruction of Pd nanowires, such as breaks and peel-offs, leading to severe difficulty in the reliable detection of H2 over a wide concentration range. Here, we proposed a structural approach to resolve this issue by introducing a partially anchored Pd nanowire (PA-PdNW) structure. In this configuration, most of the structure was air-suspended, leaving a small portion anchored to the substrate. Air-suspension enabled PA-PdNW to expand freely, thus relieving the mechanical stress; therefore, the Pd nanowires could withstand numerous exposures to high H2 concentrations. To demonstrate the PA-PdNW structure, we developed a nano-fabrication method based on conventional semiconductor processes and successfully manufactured H2 sensor devices with uniform, perfectly aligned PA-PdNW arrays stably air-suspended with designed gaps from the substrate. The fabricated sensors achieved reliable detection of H2 in the 0.1%-3.9% concentration range with a significant resistance change. In addition, compared with fully anchored Pd nanowire (FA-PdNW) sensors, the PA-PdNW sensors showed superior durability, and the nanowires retained their initial structures even after 300 exposures to high H2 concentrations. Furthermore, it was confirmed that the PA-PdNW sensor can stably operate even in extremely humid environments at 85% relative humidity.

14.
Sci Rep ; 9(1): 7334, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089236

RESUMO

Recently, copper oxide (CuO)-based visible-light photodetectors have attracted great interest due to their narrow bandgap (1.2 eV), low cost, and ease of fabrication. However, there has been insufficient theoretical analysis and study of CuO-based photodetectors, resulting in inferior performance in terms of responsivity, detectivity, and response speed. This work develops a method to enhance the performance of CuO photodetectors by engineering a grain structure based on a newly-developed theoretical model. In the developed theoretical grain-structure model, the grain size and the connections between grains are considered because they can strongly affect the optoelectronic characteristics of CuO photodetectors. Based upon the proposed model, the engineered CuO device achieves enhanced optoelectronic performance. The engineered device shows high responsivity of 15.3 A/W and detectivity of 1.08 × 1011 Jones, which are 18 and 50 times better than those of the unoptimized device, and also shows fast rising and decaying response speeds of 0.682 s and 1.77 s, respectively. In addition, the proposed method is suitable for the mass-production of performance-enhanced, reliable photodetectors. By using a conventional semiconductor fabrication process, a photodetector-array is demonstrated on a 4-inch wafer. The fabricated devices show uniform, high, and stable optoelectronic performance for a month.

15.
ACS Appl Mater Interfaces ; 11(20): 18617-18625, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31018637

RESUMO

Micro-/nanoelectromechanical (MEM/NEM) switches have been extensively studied to address the limitations of transistors, such as the increased standby power consumption and performance dependence on temperature and radiation. However, their lifetimes are limited owing to the degradation of the contact surfaces. Even though several materials and structural designs have been recently developed to improve the lifetime, the production of a microswitch that is compatible with a complementary metal-oxide semiconductor (CMOS) with a long lifetime remains a significant challenge. We demonstrate a vertically actuated MEM switch with extremely high reliability by integrating a carbon nanotube (CNT) network on a gold electrode as the contact material using a low-temperature, CMOS-compatible solution process. In addition to their outstanding mechanical and electrical properties of CNTs, their deformability dramatically increases the effective contact area of the switch, thus resulting in the extension of the lifetime. The CNT-coated MEM switch exhibits a lifetime that is more than 7 × 108 cycles when operated in hot-switching conditions, which is 1.9 × 104 times longer than that of a control device without CNTs. The switch also shows an excellent switching performance, including a low electrical resistance, high on/off ratio, and an extremely small off-state current.

16.
Opt Express ; 26(16): 20802-20812, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119385

RESUMO

Local dimming technology has been highly desired for integration with liquid crystal displays (LCDs) in order to improve their contrast ratios (CRs) as well as to overcome power efficiency bottlenecks. In this paper, we propose and demonstrate a slim (~1 mm) edge-lit LCD backlight unit (BLU) capable of 2D local dimming. We designed a semi-partitioned light guide plate (LGP) patterned with inverse-trapezoidal microstructures, which allows the ultra-slim BLU to function without prism sheets. Since light emitting diodes (LEDs) are placed in the middle of the LGP, the BLU can freely define illuminated areas and the whole BLU can be modularly expanded like a tile canvas. The fabricated BLU achieves uniformity in both local and global luminance distributions, as well as in high local dimming performance. Experimentally, the BLU increases the CR of the display up to two orders of magnitude compared to conventional BLUs.

17.
ACS Nano ; 12(5): 4387-4397, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29589909

RESUMO

Nanowire-transfer technology has received much attention thanks to its capability to fabricate high-performance flexible nanodevices with high simplicity and throughput. However, it is still challenging to extend the conventional nanowire-transfer method to the fabrication of a wide range of devices since a chemical-adhesion-based nanowire-transfer mechanism is complex and time-consuming, hindering successful transfer of diverse nanowires made of various materials. Here, we introduce a material-independent mechanical-interlocking-based nanowire-transfer (MINT) method, fabricating ultralong and fully aligned nanowires on a large flexible substrate (2.5 × 2 cm2) in a highly robust manner. For the material-independent nanotransfer, we developed a mechanics-based nanotransfer method, which employs a dry-removable amorphous carbon (a-C) sacrificial layer between a vacuum-deposited nanowire and the underlying master mold. The controlled etching of the sacrificial layer enables the formation of a mechanical-interlocking structure under the nanowire, facilitating peeling off of the nanowire from the master mold robustly and reliably. Using the developed MINT method, we successfully fabricated various metallic and semiconductor nanowire arrays on flexible substrates. We further demonstrated that the developed method is well suited to the reliable fabrication of highly flexible and high-performance nanoelectronic devices. As examples, a fully aligned gold (Au) microheater array exhibited high bending stability (106 cycling) and ultrafast (∼220 ms) heating operation up to ∼100 °C. An ultralong Au heater-embedded cuprous-oxide (Cu2O) nanowire chemical gas sensor showed significantly improved reversible reaction kinetics toward NO2 with 10-fold enhancement in sensitivity at 100 °C.

18.
ACS Appl Mater Interfaces ; 10(10): 9085-9093, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29461033

RESUMO

Micro-/nano-electromechanical (M/NEM) switches have received significant attention as promising switching devices for a wide range of applications such as computing, radio frequency communication, and power gating devices. However, M/NEM switches still suffer from unacceptably low reliability because of irreversible degradation at the contacting interfaces, hindering adoption in practical applications and further development. Here, we evaluate and verify graphene as a contact material for reliability-enhanced M/NEM switching devices. Atomic force microscopy experiments and quantum mechanics calculations reveal that energy-efficient mechanical contact-separation characteristics are achieved when a few layers of graphene are used as a contact material on a nickel surface, reducing the energy dissipation by 96.6% relative to that of a bare nickel surface. Importantly, graphene displays almost elastic contact-separation, indicating that little atomic-scale wear, including plastic deformation, fracture, and atomic attrition, is generated. We also develop a feasible fabrication method to demonstrate a MEM switch, which has high-quality graphene as the contact material, and verify that the devices with graphene show mechanically stable and elastic-like contact properties, consistent with our nanoscale contact experiment. The graphene coating extends the switch lifetime >103 times under hot switching conditions.

19.
ACS Nano ; 11(11): 11642-11652, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29131582

RESUMO

The fabrication of a highly ordered array of single-crystalline nanostructures prepared from solution-phase or vapor-phase synthesis methods is extremely challenging due to multiple difficulties of spatial arrangement and control of crystallographic orientation. Herein, we introduce a nanotransplantation printing (NTPP) technique for the reliable fabrication, transfer, and arrangement of single-crystalline Si nanowires (NWs) on diverse substrates. NTPP entails (1) formation of nanoscale etch mask patterns on conventional low-cost Si via nanotransfer printing, (2) two-step combinatorial plasma etching for defining Si NWs, and (3) detachment and transfer of the NWs onto various receiver substrates using an infiltration-type polymeric transfer medium and a solvent-assisted adhesion switching mechanism. Using this approach, high-quality, highly ordered Si NWs can be formed on almost any type of surface including flexible plastic substrates, biological surfaces, and deep-trench structures. Moreover, NTPP provides controllability of the crystallographic orientation of NWs, which is confirmed by the successful generation of (100)- and (110)-oriented Si NWs with different properties. The outstanding electrical properties of the NWs were confirmed by fabricating and characterizing Schottky junction field-effect transistors. Furthermore, exploiting the highly flexible nature of the NWs, a high-performance piezoresistive strain sensor, with a high gauge factor over 200 was realized.

20.
ACS Nano ; 11(8): 7781-7789, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28708372

RESUMO

We present a fast, energy-efficient nano-thermomechanical encoding scheme for digital information storage and retrieval. Digital encoding processes are conducted by the bistable electrothermal actuation of a scalable nanobridge device. The electrothermal energy is highly concentrated by enhanced electron/phonon scattering and heat insulation in a sub-100 nm metallic layer. The efficient conversion of electrothermal energy into mechanical strain allows digital switching and programming processes within 60 ns at 0.75 V with a programming energy of only 54 pJ. Furthermore, this encoding scheme together with the thermally robust design enables data retention at temperatures up to 400 °C. These results suggest that the proposed nano-thermomechanical encoding method could contribute to low-power electronics and robust information storage/retrieval systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA