Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 18(3): 1023-1030, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404650

RESUMO

Background/purpose: Naturally derived collagen crosslinkers with matrix metalloproteinases (MMPs) inhibitory activity for dentin bonding have been previously studied. One of these crosslinkers is flavonoids. The purpose of this study was to investigate whether dentin pretreatment with kaempferol (KEM), one of the flavonoids, enhances dentin bond stability and nanoleakage at the dentin-resin interface through MMPs inhibition and collagen crosslinking. Materials and methods: The experimental KEM-containing solution was used to pretreat demineralized dentin prior to the application of a universal adhesive. KEM is a natural flavonoid and those which did not take the experimental solution served as the control group (CON). Microtensile bond strength (µTBS) and nanoleakage tests were conducted before and after the thermocycling to evaluate the influence of KEM on dentin bond strength. The MMPs inhibition activity of KEM was analyzed via MMPs zymography using a confocal microscopy. Fourier-transform infrared (FTIR) spectroscopy was used to demonstrate that KEM inhibits MMPs and enhances collagen crosslinking. Results: The µTBS values of KEM group exhibited a higher bond strength after thermocycling. At the resin-dentin interface, the KEM group did not exhibit any signs of nanoleakage after thermocycling. Furthermore, MMPs zymography confirmed that there was a relatively low activity of MMPs in the presence of KEM. In FTIR analysis, the PO4 peak representing the cross-link between dentin and collagen was significantly higher in the KEM group. Conclusion: Our findings suggest that pretreatment with KEM enhances the dentin bonding stability at the resin-dentin interface by acting as a collagen crosslinker and MMPs inhibitor.

2.
ACS Nano ; 17(14): 13584-13593, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37294876

RESUMO

Structural colors are produced by the diffraction of light from microstructures. The collective arrangement of substructures is a simple and cost-effective approach for structural coloration represented by colloidal self-assembly. Nanofabrication methods enable precise and flexible coloration by processing individual nanostructures, but these methods are expensive or complex. Direct integration of desired structural coloration remains difficult because of the limited resolution, material-specificity, or complexity. Here, we demonstrate three-dimensional printing of structural colors by direct writing of nanowire gratings using a femtoliter meniscus of polymer ink. This method combines a simple process, desired coloration, and direct integration at a low cost. Precise and flexible coloration is demonstrated by printing the desired structural colors and shapes. In addition, alignment-resolved selective reflection is shown for displayed image control and color synthesis. The direct integration facilitates structural coloration on various substrates, including quartz, silicon, platinum, gold, and flexible polymer films. We expect that our contribution can expand the utility of diffraction gratings across various disciplines such as surface-integrated strain sensors, transparent reflective displays, fiber-integrated spectrometers, anticounterfeiting, biological assays, and environmental sensors.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36432282

RESUMO

We attempted to improve the photon absorption of the photoactive layer in organic photovoltaic (OPV) devices by device engineering without changing their thickness. Soft nanoimprinting lithography was used to introduce a 1D grating pattern into the photoactive layer. The increase in photocurrent caused by the propagating surface plasmon-polariton mode was quantitatively analyzed by measuring the external quantum efficiency in transverse magnetic and transverse electric modes. In addition, the introduction of an ultrathin substrate with a refractive index of 1.34 improved photon absorption by overcoming the mismatched optical impedance at the air/substrate interface. As a result, the power conversion efficiency (PCE) of an ultrathin OPV with a 400 nm grating period was 8.34%, which was 11.6% higher than that of an unpatterned ultrathin OPV, and the PCE was 3.2 times higher at a low incident light angle of 80°, indicating very low incident light angle dependence.

4.
Front Bioeng Biotechnol ; 10: 993126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425651

RESUMO

Biphasic calcium phosphate (BCP) is generally considered a good synthetic bone graft material with osteoinductive potential. Lithium ions are trace elements that play a role in the bone-remodeling process. This study aimed to investigate the effects of lithium ions on the phase, crystal structure, and biological responses of lithium doped BCPs and to identify improvements in their osteogenic properties. Lithium-doped BCP powders with different doping levels (0, 5, 10, and 20 at%) were synthesized via the co-precipitation method. We found that the four types of lithium-doped BCP powders showed different phase compositions of hydroxyapatite and ß-tricalcium phosphate. In addition, lithium ions favored entering the ß-tricalcium phosphate structure at the Ca (4) sites and calcium vacancy sites [VCa(4)] up to 10 at%. This substitution improves the crystal stabilization by filling the vacancies with Ca2+ and Li+ in all Ca sites. However, when the concentration of Li ions was higher than 10 at%, lithium-induced crystal instability resulted in the burst release of lithium ions, and the osteogenic behavior of human dental pulp stem cells did not improve further. Although lithium ions regulate osteogenic properties, it is important to determine the optimal amount of lithium in BCPs. In this study, the most effective lithium doping level in BCP was approximately 10 at% to improve its biological properties and facilitate medical applications.

5.
Front Bioeng Biotechnol ; 10: 944869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118566

RESUMO

This study aimed to investigate whether a phosphoric acid (H3PO4) solution containing calcium phosphate ion clusters (CPICs) could minimize enamel damage during long-term bracket bonding by dissolving the enamel surface and promoting enamel remineralization. The experimental design is as follows: first, three experimental etchants (H3PO4, CPICs-incorporated H3PO4 solution-I, and CPICs-incorporated H3PO4 solution-II) and two bonding resins (conventional orthodontic resin and self-adhesive orthodontic resin) were used in combination to create six groups, respectively. Each of these six groups was then divided into two sub-groups based on the presence or absence of thermocycling (TC). Twenty samples were assigned to each of the 12 groups (independent variables), and thus a total of 240 metal bracket-attached human premolars were used in this experiment. Bracket debonding was performed on each of 20 premolars in 12 groups, and shear bond strength (SBS) and adhesive remnant index (ARI) values were measured as dependent variables. Next, the three experimental etchants were applied (independent variables) to each of the three enamel samples, and the remineralization of the enamel surface was investigated as a dependent variable. The enamel surface was observed using electron scanning and atomic force microscopy. Furthermore, X-ray diffraction, energy dispersive spectroscopy (EDX) spectrum X-ray spectroscopy, and elemental mapping were performed, and the Knoop microhardness scale was measured. Therefore, the experiment was performed in two steps: SBS and ARI measurements for 12 groups, followed by observation of the enamel surface and microhardness measurements, according to the three types of etchants. As a result of the experiment, first, when the bracket was debonded, SBS did not decrease, and residual adhesive was hardly observed in the C2A group (before TC), C2A, and C1C groups (after TC) (p < 0.001). Second, the experimental etchant containing CPICs achieved remineralization while demineralizing the enamel. This was verified through SEM/EDX, element mapping, XRD, and AFM. Also, the roughness and microhardness of the enamel surface were better in the remineralized surface by the experimental etchant containing CPICs (p < 0.017). The CPICs-incorporated H3PO4 solution reduced ARI while maintaining SBS during bracket debonding, regardless of whether TC was performed or the type of resin. The etchant containing CPICs was also shown to remineralize the enamel and increase its microhardness.

6.
Materials (Basel) ; 15(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806825

RESUMO

ß-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in ß-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted ß-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The ß-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca-O and P-O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS-HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in ß-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.

7.
J Dent Sci ; 17(2): 848-855, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35756757

RESUMO

Abstract Background/purpose: Self-adhesive resins (SARs) do not require additional restorative adhesives and provide adequate adhesion to mineralized dental structures by shortening the bonding time in clinics where moisture control and isolation are difficult. The aim of this study was to evaluate the mechanical and biological properties of SARs containing mesoporous bioactive glass nanoparticles (MBNs) and 2-methacryloyloxyethyl phosphorylcholine (MPC) and to determine their antibacterial and remineralization effects. Materials and methods: MBNs and MPC were added to SARs to improve their physical properties and remineralization ability. The experimental resins assessed in this study were SARs mixed with 3%MPC, 5%MPC, 1%MBN+3%MPC, or 3%MBN+3%MPC. The shear bond strength, microhardness, adhesive remnant index, ion dissolution, degree of conversion, and antibacterial properties of the SARs were evaluated. To assess the remineralization properties, micro-computed tomography analysis was performed after pH cycling. Results: Increasing the MBN content in SAR resulted in higher microhardness compared to the control SAR. The shear bond strength decreased in the SAR+5%MPC group and increased in the SAR+1%MBN+3%MPC and SAR+3%MBN+5%MPC groups. Conclusion: Our findings suggest that SARs containing MBNs and MPC have antibacterial and remineralization effects on the enamel.

8.
Materials (Basel) ; 15(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35629587

RESUMO

Aluminum silicate powder was prepared using two different syntheses: (1) co-precipitation and (2) two-step sol-gel method. All synthesized powders were characterized by various techniques including XRD, FE-SEM, FT-IR, BET, porosimeter, and zetasizer. The particle morphology of the synthesized aluminum silicate powder was greatly different depending on the synthesis. The synthesized aluminum silicate powder by co-precipitation had a low specific surface area (158 m2/g) and the particle appeared to have a sharp edge, as though in a glassy state. On the other hand, synthesized aluminum silicate powder by the two-step sol-gel method had a mesoporous structure and a large specific surface area (430 m2/g). The aluminum silicate powders as adsorbents were characterized for their adsorption behavior towards Pb (II) ions and methylene blue in an aqueous solution performed in a batch adsorption experiment. The maximum adsorption capacities of Pb (II) ions and methylene blue onto the two-step sol-gel method powder were over four-times and seven-times higher than that of the co-precipitation powder, respectively. These results show that the aluminum silicate powder synthesized with a two-step sol-gel method using ammonia can be a potential adsorbent for removing heavy metal ions and organic dyes from an aqueous solution.

9.
Materials (Basel) ; 15(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208035

RESUMO

The purpose of this study was to evaluate the effects of flavonoids and calcium phosphate ion clusters (CPIC) on dentin bonding stability. Seven experimental solutions were synthesized using icaritin (ICT), fisetin (FIS), silibinin (SIB), CPIC, and combinations of one of three flavonoids and CPIC (ICT + C, FIS + C, SIB + C). The experimental solutions were applied to demineralized dentin prior to the application of a universal adhesive. A group without any experimental solution served as a control. Dentin specimens pretreated with the experimental solutions were assayed using Fourier transform infrared (FTIR) spectroscopy. The microtensile bond strength (µTBS) and nanoleakage were evaluated at 24 h and after 10,000 thermocycles. FIS and ICT + C showed significantly higher µTBS than the control group at 24 h. CPIC, ICT + C, FIS + C, and SIB + C showed significantly higher µTBS than the control group after thermocycling. After thermocycling, silver infiltration into the hybrid layer and interfacial gaps was more noticeable in the control group than in the other groups. The FTIR spectra revealed the formation of apatitic minerals in the demineralized dentin in the flavonoid and CPIC combination groups. The pretreatment of demineralized dentin with flavonoids and CPIC improved dentin bonding stability. The flavonoid and CPIC combinations preserved dentin bond strength.

10.
Adv Sci (Weinh) ; 9(1): e2103826, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34802193

RESUMO

With the timely advent of the electric vehicle era, where battery stability has emerged as a major issue, all-solid-state batteries (ASSBs) have attracted significant attention as the game changer owing to their high stability. However, despite the introduction of a densely packed solid electrolyte (SE) layer, when Li is used to increase the energy density of the cell, the short-circuit problem caused by Li protrusion is unavoidable. Furthermore, most strategies to control nonuniform Li growth are so complicated that they hinder the practical application of ASSBs. To overcome these limitations, this study proposes an Ag-Li alloy anode via mass-producible roll pressing method. Unlike previous studies reporting solid-solution-based metal alloys containing a small amount of lithiophilic Ag, the in situ formed and Ag-enriched Ag-Li intermetallic layer mitigates uneven Li deposition and maintains a stable SE/Ag-Li interface, facilitating reversible Li operation. Contrary to Li cells showing frequent initial short-circuit, the cell incorporating the Ag-Li anode exhibits a better capacity retention of 94.3% for 140 cycles, as well as stable cycling even under 12 C. Through a facile approach enabling the fabrication of a large-area anode with controllable Li growth, this study provides practical insight for developing ASSBs with stable cyclabilities.

11.
Materials (Basel) ; 14(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947416

RESUMO

Carbon nanotube fiber (CNTF) is a highly conductive and porous platform to grow active materials of lithium-ion batteries (LIB). Here, we prepared SnO2@CNTF based on sulfonic acid-functionalized CNTF to be used in LIB anodes without binder, conductive agent, and current collector. The SnO2 nanoparticles were grown on the CNTF in an aqueous system without a hydrothermal method. The functionalized CNTF exhibited higher conductivity and effective water infiltration compared to the raw CNTF. Due to the enhanced water infiltration, the functionalized CNTF became SnO2@CNTF with an ideal core-shell structure coated with a thin SnO2 layer. The specific capacity and rate capability of SnO2@-functionalized CNTF were superior to those of SnO2@raw CNTF. Since the SnO2@CNTF-based anode was free of a binder, conductive agent, and current collector, the specific capacity of the anode studied in this work was higher than that of conventional anodes.

12.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202013

RESUMO

Self-adhesive resins (SARs) contain adhesives, which simplify the procedures of resin application, and primers, which provide sufficient bonding ability. In this study, mesoporous bioactive glass nanoparticles (MBN) were added to a SAR to easily improve the physical properties and remineralization ability. The experimental resins comprised 1%, 3%, and 5% MBN mixed in Ortho Connect Flow (GC Corp, Tokyo, Japan). As the MBN content in the SAR increased, the microhardness increased, and a statistically significant difference was observed between the cases of 1% and 5% MBN addition. Shear bond strength increased for 1% and 3% MBN samples and decreased for 5% MBN. The addition of MBN indicated a statistically significant antibacterial effect on both gram-negative and gram-positive bacteria. The anti-demineralization experiment showed that the remineralization length increased with the MBN content of the sample. Through the above results, we found that SAR containing MBN has antibacterial and remineralization effects. Thus, by adding MBN to the SAR, we investigated the possibility of orthodontic resin development, wherein the strength is enhanced and the drawbacks of the conventional SAR addressed.

13.
Materials (Basel) ; 14(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917786

RESUMO

Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).

14.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003534

RESUMO

The purpose of this study was to assess the effects in the dentin bond strength of dental adhesives (DAs) and biological effects using zinc (Zn)-doped mesoporous bioactive glass nanoparticles (MBN-Zn). Synthesized MBN and MBN-Zn were characterized by scanning electron microscopy (SEM), X-ray diffraction and the Brunauer, Emmett and Teller (BET) method. The matrix metalloproteinases (MMP) inhibition effects of DA-MBN and DA-MBN-Zn were analyzed. The microtensile bond strength (MTBS) test was conducted before and after thermocycling to investigate the effects of MBN and MBN-Zn on the MTBS of DAs. The biological properties of DA-MBN and DA-MBN-Zn were analyzed with human dental pulp stem cells (hDPSCs). Compared with the DA, only the DA-1.0% MBN and DA-1.0% MBN-Zn exhibited a statistically significant decrease in MMP activity. The MTBS values after thermocycling were significantly increased in DA-1.0% MBN and DA-1.0% MBN-Zn compared with the DA (p < 0.05). It was confirmed via the MTT assay that there was no cytotoxicity for hDPSCs at 50% extract. In addition, significant increases in the alkaline phosphatase activity and Alizarin Red S staining were observed only in DA-1.0%MBN-Zn. These data suggest the 1.0% MBN and 1.0% MBN-Zn enhance the remineralization capability of DAs and stabilize the long-term MTBS of DAs by inhibiting MMPs.

15.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629909

RESUMO

2-methacryloyloxyethyl phosphorylcholine (MPC) is known to have antibacterial and protein-repellent effects, whereas mesoporous bioactive glass nanoparticles (MBN) are known to have remineralisation effects. We evaluated the antibacterial and remineralisation effects of mixing MPC and MBN at various ratios with orthodontic bonding agents. MPC and MBN were mixed in the following weight percentages in CharmFil-Flow (CF): CF, 3% MPC, 5% MPC, 3% MPC + 3% MBN, and 3% MPC + 5% MBN. As the content of MPC and MBN increased, the mechanical properties of the resin decreased. At 5% MPC, the mechanical properties decreased significantly with respect to CF (shear bond strength), gelation of MPC occurred, and no significant difference was observed in terms of protein adsorption compared to the control group. Composition 3% MPC + 5% MBN exhibited the lowest protein adsorption because the proportion of hydrophobic resin composite decreased; CF (91.8 ± 4.8 µg/mL), 3% MPC (73.9 ± 2.6 µg/mL), 3% MPC + 3% MBN (69.4 ± 3.6 µg/mL), and 3% MPC + 5% MBN (55.9 ± 1.6 µg/mL). In experiments against S. mutans and E. coli, addition of MPC and MBN resulted in significant antibacterial effects. In another experiment, the anti-demineralisation effect was improved when MPC was added, and when MBN was additionally added, it resulted in a synergetic effect. When MPC and MBN were added at an appropriate ratio to the orthodontic bonding agents, the protein-repellent, antibacterial, and anti-demineralisation effects were improved. This combination could thus be an alternative way of treating white spot lesions.

16.
ACS Nano ; 14(9): 10993-11001, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32702235

RESUMO

The pixel is the minimum unit used to represent or record information in photonic devices. The size of the pixel determines the density of the integrated information, such as the resolution of displays or cameras. Most methods used to produce display pixels are based on two-dimensional patterning of light-emitting materials. However, the brightness of the pixels is limited when they are miniaturized to nanoscale dimensions owing to their limited volume. Herein, we demonstrate the production of three-dimensional (3D) pixels with nanoscale dimensions based on the 3D printing of quantum dots embedded in polymer nanowires. In particular, a femtoliter meniscus was used to guide the solidification of liquid inks to form vertically freestanding nanopillar structures. Based on the 3D layout, we show high-density integration of color pixels, with a lateral dimension of 620 nm and a pitch of 3 µm for each of the red, green, and blue colors. The 3D structure enabled a 2-fold increase in brightness without significant effects on the spatial resolution of the pixels. In addition, we demonstrate individual control of the brightness based on a simple adjustment of the height of the 3D pixels. This method can be used to achieve super-high-resolution display devices and various photonic applications across a range of disciplines.

17.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230884

RESUMO

Dentin hypersensitivity is one of the most common clinical conditions usually associated with exposed dentinal tubules. The purpose of this study was to identify the potential of a graphene oxide quantum dot coating for mesoporous bioactive glass nanoparticles as a new material for the treatment of dentin hypersensitivity by investigating its mineralization activity and dentinal tubules sealing. Mesoporous bioactive glass nanoparticle was fabricated by modified sol-gel synthesis. X-ray diffraction was performed to characterize the synthesized nanoparticle Fourier transform infra-red spectroscopy investigated the functionalized surfaces. The distribution of the specific surface area and the pore size was measure by Pore size analysis. The morphology of sample was observed by Field Emission Scanning Electron Microscope (FESEM) and Field Emission Transmission Electron Microscope (FETEM). After disk-shaped specimens of mesoporous bioactive glass nanoparticles and graphene oxide quantum dot coated mesoporous bioactive glass nanoparticles (n = 3) were soaked in the simulated body fluid for 0, 1, 5, 10,and 30 days, the amount of ions released was observed to confirm the ionic elution for mineralization. Sensitive tooth model discs (n = 20) were applied with two samples and evaluated the dentinal tubule sealing ability. The spherical mesoporous bioactive glass nanoparticles and graphene oxide quantum dot coated mesoporous bioactive glass nanoparticles with a diameter of about 500 nm were identified through FESEM and FETEM. The ion release capacity of both samples appeared to be very similar. The amount of ion released and in vitro mineralization tests confirmed that graphene oxide quantum dot coating of mesoporous bioactive glass nanoparticles did not inhibit the release of calcium, silicon and phosphate ions, but rather that graphene oxide quantum dot promoted hydroxyapatite formation. In the FESEM image of the sensitive tooth disc surface, it was observed that graphene oxide quantum dot coated mesoporous bioactive glass nanoparticles sealed tightly the dentinal tubules. The graphene oxide quantum dot coating of mesoporous bioactive glass nanoparticles not only showed the excellent dentinal sealing ability but also rapidly promoted mineralization while minimizing the size increase by coating the mesoporous bioactive glass nanoparticles.

18.
Materials (Basel) ; 12(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167432

RESUMO

Orthodontic treatment involving the bonding of fixed appliances to tooth surfaces can cause white spot lesions (WSLs). WSLs increase the likelihood of cavity formation and hence require preservation and prosthetic restoration. Therefore, the prevention of WSLs is of greater importance than treatment. Application of fluoride or the use of fluoride-containing mouthwash can prevent WSLs, but this requires patient cooperation and additional time and cost. Bioactive glass containing 2.5% fluoride was synthesized and mixed with the orthodontic bonding adhesive Transbond XT Low Flow (LV) at ratios of 1, 3, and 5% to prepare orthodontic adhesive samples. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the samples. The Vickers hardness test, bracket retention test, and adhesive remnant index (ARI) of the samples were analysed to determine their mechanical properties. To determine the biological cytotoxicity, the cell activity of the samples was evaluated using cell viability tests and the antibacterial activity was analysed using Streptococcus mutans. To evaluate the anti-demineralization effect, the sample was bonded to extracted teeth and a pH cycle test was performed. Micro computed tomography data were obtained from the bonded teeth and sample, and the anti-demineralization effect was evaluated using the ImageJ software program. The Vickers hardness of the sample was higher than that of LV and was dependent on the concentration of fluoride-containing bioactive glass (FBAG). The bracket retention test and ARI of the sample showed no significant differences from those of LV. The cell viability test showed no significant changes at 24 and 48 h after application of the sample. The fluoride ion release test indicated an ion release rate of 9.5-17.4 µg/cm2. The antibacterial activity of the experimental group containing FBAG was significantly higher than that of the LV group. The anti-demineralization test showed a concentration-dependent increase. However, the resin containing 5 mass% FBAG (FBAG5) showed a statistically-significant increase compared with LV. The orthodontic adhesive containing FBAG showed antibacterial and anti-demineralization effects, thus indicating possible WSL prevention activity.

19.
Nanomaterials (Basel) ; 9(4)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974829

RESUMO

Dentin hypersensitivity (DH) is one of the most common clinical conditions usually associated with exposed dentinal surfaces. In this study, we identified the effectiveness of poly(amidoamine) (PAMAM) dendrimer-coated mesoporous bioactive glass nanoparticles (MBN) (PAMAM@MBN) on DH treatment, examining the ion-releasing effect, dentin remineralization, and the occluding effect of dentinal tubules. We synthesized MBN and PAMAM@MBN. After soaking each sample in simulated body fluid (SBF), we observed ion-releasing effects and dentin remineralization effects for 30 days. Also, we prepared 30 premolars to find the ratio of occluded dentinal tubules after applying MBN and PAMAM@MBN, respectively. The results showed that PAMAM did not disrupt the calcium ion-releasing ability or the dentin remineralization of MBN. The PAMAM@MBN showed a better occluding effect for dentinal tubules than that of MBN (p < 0.05). In terms of dentinal tubule occlusion, the gap between MBN was well occluded due to PAMAM. This implies that PAMAM@MBN could be effectively used in dentinal tubule sealing and remineralization.

20.
Small ; 15(18): e1900235, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30963717

RESUMO

All-solid-state batteries (ASSBs) have lately received enormous attention for electric vehicle applications because of their exceptional stability by engaging all-solidified cell components. However, there are many formidable hurdles such as low ionic conductivity, interface instability, and difficulty in the manufacturing process, for its practical use. Recently, carbon, one of the representative conducting agents, turns out to largely participate in side reactions with the solid electrolyte, which finally leads to the formation of insulating side products at the interface. Although the battery community mentioned that parasitic reactions are presumably attributed to carbon itself or the generation of electronic conducting paths lowering the kinetic barrier for reactions, the underlying origin for such reactions as well as appropriate solutions have not been provided yet. In this study, for the first time, it is verified that the functional group on carbon is an origin for causing negative effects on interfacial stability and a graphitized hollow nanocarbon as a promising solution for improving-electrochemical performance is introduced. This work offers an invaluable lesson that a relatively minor part, such as a conducting agent, in ASSBs sometimes gives more positive impact on improving electrochemical performance than huge efforts for resolving other parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA