Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2406243, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363796

RESUMO

Anode materials storing large-scale lithium ions gradually decrease electrochemical performance due to severe volume changes during cycling. Therefore, there is an urgent need to develop anode materials with high electrochemical capacity and durability, without deterioration arising due to the volume changes during the electrochemical processes. To date, mesoporous materials have received attention as anode materials due to their ability to mitigate volume expansion, offer a short pathway for Li+ transport, and exhibit anomalous high capacity. However, the nano-frameworks of transition metal oxide collapse during conversion reactions, demanding an improvement in nano-framework structure stability. In this study, ordered mesoporous nickel manganese oxide (m-NMO) is designed as an anode material with a highly durable nanostructure. Interestingly, m-NMO showed better cycle performance and higher electrochemical capacity than those of nickel oxide and manganese oxide. Operando small-angle X-ray scattering and ex situ transmission electron microscopic results confirmed that the binary m-NMO sustained a highly durable nanostructure upon cycling, unlike the single metal oxide electrodes where the mesostructures collapsed. Ex situ X-ray absorption spectroscopy proved that nickel and manganese showed different electrochemical reaction voltages, and thus undergoes sequential conversion reactions. As a result, both elements can act as complementary nano-propping buffers to maintain stable mesostructure.

2.
ACS Appl Mater Interfaces ; 15(48): 55745-55752, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011599

RESUMO

In this study, the one-dimensional (1D) material V2Se9 was successfully synthesized using a colloidal method with VO(acac)2 and Se powder as precursors in a 1-octadecene solvent. The obtained colloidally synthesized V2Se9 (C-V2Se9) has an ultrathin nanobelt shape and a 4.5 times higher surface area compared with the bulk V2Se9, which is synthesized in a solid-state reaction as previously reported. In addition, all surfaces of C-V2Se9 are exposed to Se atoms, which is advantageous for storing Li through the conversion reaction into the Li2Se phase. Herein, the electrochemical performance of the C-V2Se9 anode material is evaluated; thus, the novelty of C-V2Se9 as a Se-rich 1D anode material is verified. The C-V2Se9 electrode exhibits a reversible capacity of 893.21 mA h g-1 and a Coulombic efficiency of 97.82% at the 100th cycle and excellent structural stability. Compared with the bulk V2Se9 electrode, the outstanding electrochemical performance of C-V2Se9 is attributed to its ultrathin nanobelt shape, high surface area, shorter Li diffusion length, and more electrochemically active sites. This work indicates the great potential of the Se-rich 1D material, C-V2Se9, as a post-transition metal dichalcogenide material for high-performance LIBs.

3.
Genes (Basel) ; 14(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37628648

RESUMO

Campanula carpatica is an ornamental flowering plant belonging to the family Campanulaceae. The complete chloroplast genome of C. carpatica was obtained using Illumina HiSeq X and Oxford Nanopore (Nanopore GridION) platforms. The chloroplast genome exhibited a typical circular structure with a total length of 169,341 bp, comprising a large single-copy region of 102,323 bp, a small single-copy region of 7744 bp, and a pair of inverted repeats (IRa/IRb) of 29,637 bp each. Out of a total 120 genes, 76 were protein-coding genes, 36 were transfer RNA genes, and eight were ribosomal RNA genes. The genomic characteristics of C. carpatica are similar to those of other Campanula species in terms of repetitive sequences, sequence divergence, and contraction/expansion events in the inverted repeat regions. A phylogenetic analysis of 63 shared genes in 16 plant species revealed that Campanula zangezura is the closest relative of C. carpatica. Phylogenetic analysis indicated that C. carpatica was within the Campanula clade, and C. pallida occupied the outermost position of that clade.


Assuntos
Campanulaceae , Genoma de Cloroplastos , Magnoliopsida , Filogenia , Campanulaceae/genética , Genômica
4.
Small ; 19(42): e2304269, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317038

RESUMO

All-solid-state lithium batteries have been developed to secure safety by substituting a flammable liquid electrolyte with a non-flammable solid electrolyte. However, owing to the nature of solids, interfacial issues between cathode materials and solid electrolytes, including chemical incompatibility, electrochemo-mechanical behavior, and physical contact, pose significant challenges for commercialization. Herein, critical factors for understanding the performance of all-solid-state batteries in terms of solid interfaces and non-zero lattice strains are identified through a strategic approach. The initial battery capacity can be increased via surface coating and electrode-fabrication methods; however, the increased lattice strain causes significant stress to the solid interface, which degrades the battery cycle life. However, this seesaw effect can be alleviated using a more compacted electrode microstructure between the solid electrolyte and oxide cathode materials. The compact solid interfaces contribute to low charge-transfer resistance and a homogeneous reaction between particles, thereby leading to improved electrochemical performance. These findings demonstrate, for the first time, a correlation between the uniformity of the electrode microstructure and electrochemical performance through the investigation of the reaction homogeneity among particles. Additionally, this study furthers the understanding of the relationship between electrochemical performance, non-zero lattice strain, and solid interfaces.

5.
Mater Horiz ; 10(3): 829-841, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597945

RESUMO

Although Li- and Mn-rich layered oxides are attractive cathode materials possessing high energy densities, they have not been commercialized owing to voltage decay, low rate capability, poor capacity retention, and high irreversible capacity in the first cycle. To circumvent these issues, we propose a Li1.2Ni0.13Co0.13Mn0.53Nb0.01O2 (Nb-LNCM) cathode material, wherein Nb doping strengthens the transition metal oxide (TM-O) bond and alleviates the anisotropic lattice distortion while stabilizing the layered structure. During long-term cycling, maintaining a wider LiO6 interslab thickness in Nb-LNCM creates a favorable Li+ diffusion path, which improves the rate capability. Moreover, Nb doping can decrease oxygen loss, suppress the phase transition from layered to spinel and rock-salt structures, and relieve structural degradation. Nb doping results in less capacity contributions of Mn and Co and more reversible Ni and O redox reactions compared to pristine Li1.2Ni0.133Co0.133Mn0.533O2 (LNCM), which significantly mitigates the voltage decay (Δ0.289 and Δ0.516 V for Nb-LNCM and LNCM, respectively) and ensures stable capacity retention (82.7 and 70.3% for Nb-LNCM and LNCM, respectively) during the initial 100 cycles. Our study demonstrates that Nb doping is an effective and practical strategy to enhance the structural and electrochemical integrity of Li- and Mn-rich layered oxides. This promotes the development of stable cathode materials for high-energy-density lithium-ion batteries.

6.
ACS Nano ; 16(1): 631-642, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35029370

RESUMO

Iron oxide anode materials for rechargeable lithium-ion batteries have garnered extensive attention because of their inexpensiveness, safety, and high theoretical capacity. Nanostructured iron oxide anodes often undergo negative fading, that is, unconventional capacity increase, which results in a capacity increasing upon cycling. However, the detailed mechanism of negative fading still remains unclear, and there is no consensus on the provenance. Herein, we comprehensively investigate the negative fading of iron oxide anodes with a highly ordered mesoporous structure by utilizing advanced synchrotron-based analysis. Electrochemical and structural analyses identified that the negative fading originates from an optimization of the electrolyte-derived surface layer, and the thus formed layer significantly contributes to the structural stability of the nanostructured electrode materials, as well as their cycle stability. This work provides an insight into understanding the origin of negative fading and its influence on nanostructured anode materials.

7.
J Hazard Mater ; 425: 127907, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34872036

RESUMO

The regeneration of cathode materials would be the highest value-added direction in lithium-ion battery (LIB) recycling research. Li[NixMnyCoz]O2 (NMC) is regenerated from actual industrial scale LIB leachate and purified leachate to investigate the precipitation behavior of impurities, which include potentially toxic elements, such as F, Cl, and S. Regenerated precursors from the actual leachate, purified precursors, and a control sample are synthesized using the hydroxide co-precipitation method. Additionally, simulated precursors from simulated leachate are prepared in order to separate the effects of nonmetallic elements from the effects of metallic elements. The structure and electrochemical properties of the regenerated precursors and the corresponding cathode materials are examined. We first detect the presence of a significant amount of nonmetal elements, such as F as well as well-known metal elements, which include Al, Cu, and Fe, in the regenerated NMC. The concept of yield of precipitation (YOP) is introduced to assess the precipitation behavior of each element during the co-precipitation of the precursors. According to the concentration and YOP in the leachate and the precursors, six metal and three nonmetal elements are categorized. This categorization of impurity elements will certainly provide the LIB recycling industry with a valuable quality control guide.

8.
Small ; 17(14): e2006433, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33705600

RESUMO

In this study, four different MnO2 polymorphs are synthesized with a controlled morphology of hollow porous structures to systematically investigate the influences of polymorphs in conversion-based material. As the structure of these materials transforms into nanosized metal and maintains an extremely low-crystalline phase during cell operation, the effects of polymorphs are overlooked as compared to the case of insertion-based materials. Thus, differences in the ion storage behaviors among various MnO2 polymorphs are not well identified. Herein, the structural changes, charge storage reaction, and electrochemical performance of the different MnO2 polymorphs are investigated in detail. The experimental results demonstrate that the charge storage reactions, as part of which spinel-phased MnO2 formation is observed after lithiation and delithiation instead of recovery of the original phases, are similar for all the samples. However, the electrochemical performance varies depending on the initial crystal structure. Among the four polymorphs, the spinel-type λ-MnO2 delivers the highest reversible capacity of ≈1270 mAh g-1 . The structural similarity between the cycled and pristine states of λ-MnO2 induces faster kinetics, resulting in the better electrochemical performance. These findings suggest that polymorphs are another important factor to consider when designing high-performance materials for next-generation rechargeable batteries.

9.
Adv Sci (Weinh) ; 7(17): 2001658, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995137

RESUMO

To meet the growing demand for global electrical energy storage, high-energy-density electrode materials are required for Li-ion batteries. To overcome the limit of the theoretical energy density in conventional electrode materials based solely on the transition metal redox reaction, the oxygen redox reaction in electrode materials has become an essential component because it can further increase the energy density by providing additional available electrons. However, the increase in the contribution of the oxygen redox reaction in a material is still limited due to the lack of understanding its controlled parameters. Here, it is first proposed that Li-transition metals (TMs) inter-diffusion between the phases in Li-rich materials can be a key parameter for controlling the oxygen redox reaction in Li-rich materials. The resulting Li-rich materials can achieve fully exploited oxygen redox reaction and thereby can deliver the highest reversible capacity leading to the highest energy density, ≈1100 Wh kg-1 among Co-free Li-rich materials. The strategy of controlling Li/transition metals (TMs) inter-diffusion between the phases in Li-rich materials will provide feasible way for further achieving high-energy-density electrode materials via enhancing the oxygen redox reaction for high-performance Li-ion batteries.

10.
Small ; 16(41): e2003688, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32964623

RESUMO

Sodium-ion batteries (SIBs) have become increasingly important as next-generation energy storage systems for application in large-scale energy storage. It is very crucial to develop an eco-friendly and green SIB technique with superior performance for sustainable future use. Replacing the conventional inorganic electrode materials with green and safe organic electrodes will be a promising approach. However, the poor electrochemical kinetics, unstable electrode-electrolyte interface, high solubility of the electrodes in the electrolyte, and large amount of conductive carbon present great challenges for organic SIBs. In this study, the issues of organic electrodes are addressed through atomic-level manipulation of these organic molecules using a series of ultrathin (Å-level) metal oxide coatings (Al2 O3 , ZnO, and TiO2 ). Uniform and precise coatings on the perylene-3,4,9,10-tetracarboxylicacid dianhydride by gas-phase atomic layer deposition technique shows a stable interphase, enhanced electrochemical kinetics (71C, 10 A g-1 ), and excellent stability (89%-500 cycles) compared to conventional organic electrode (70%-200 cycles). Further studies reveal that the chemical stability of the metal oxide coating layer plays a critical role in influencing the redox behavior, and improving kinetics of organic electrodes. This study opens a new avenue for developing high-energy organic SIBs with performance equivalent to inorganic counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA