Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Hazard Mater ; 474: 134852, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852250

RESUMO

Pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have seen a recent sustained increase in usage, leading to increasing discharge and accumulation in wastewater. Conventional water treatment and disinfection processes are somewhat limited in effectively addressing this micropollutant issue. Ultrasonication (US), which serves as an advanced oxidation process, is based on the principle of ultrasound irradiation, exposing water to high-frequency waves, inducing thermal decomposition of H2O while using the produced radicals to oxidize and break down dissolved contaminants. This review evaluates research over the past five years on US-based technologies for the effective degradation of EDCs and PPCPs in water and assesses various factors that can influence the removal rate: solution pH, temperature of water, presence of background common ions, natural organic matter, species that serve as promoters and scavengers, and variations in US conditions (e.g., frequency, power density, and reaction type). This review also discusses various types of carbon/non-carbon catalysts, O3 and ultraviolet processes that can further enhance the degradation efficiency of EDCs and PPCPs in combination with US processes. Furthermore, numerous types of EDCs and PPCPs and recent research trends for these organic contaminants are considered.

2.
J Environ Manage ; 363: 121437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852419

RESUMO

Membrane-based water treatment has emerged as a promising solution to address global water challenges. Graphene oxide (GO) has been successfully employed in membrane filtration processes owing to its reversible properties, large-scale production potential, layer-to-layer stacking, great oxygen-based functional groups, and unique physicochemical characteristics, including the creation of nano-channels. This review evaluates the separation performance of various GO-based membranes, manufactured by coating or interfacial polymerization with different support layers such as polymer, metal, and ceramic, for endocrine-disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). In most studies, the addition of GO significantly improved the removal efficiency, flux, porosity, hydrophilicity, stability, mechanical strength, and antifouling performance compared to pristine membranes. The key mechanisms involved in contaminant removal included size exclusion, electrostatic exclusion, and adsorption. These mechanisms could be ascribed to the physicochemical properties of compounds, such as molecular size and shape, hydrophilicity, and charge state. Therefore, understanding the removal mechanisms based on compound characteristics and appropriately adjusting the operational conditions are crucial keys to membrane separation. Future research directions should explore the characteristics of the combination of GO derivatives with various support layers, by tailoring diverse operating conditions and compounds for effective removal of EDCs and PhACs. This is expected to accelerate the development of surface modification strategies for enhanced contaminant removal.


Assuntos
Disruptores Endócrinos , Grafite , Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Grafite/química , Disruptores Endócrinos/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Filtração , Adsorção , Água/química
3.
Chemosphere ; 356: 141941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588897

RESUMO

Bisphenol A (BPA), a widely recognized endocrine disrupting compound, has been discovered in drinking water sources/finished water and domestic wastewater influent/effluent. Numerous studies have shown photocatalytic and electrocatalytic oxidation to be very effective for the removal of BPA, particularly in the addition of graphene/graphene oxide (GO)-based nanocatalysts. Nevertheless, the photocatalytic and electrocatalytic degradation of BPA in aqueous solutions has not been reviewed. Therefore, this review gives a comprehensive understanding of BPA degradation during photo-/electro-catalytic activity in the presence of graphene/GO-based nanocatalysts. Herein, this review evaluated the main photo-/electro-catalytic degradation mechanisms and pathways for BPA removal under various water quality/chemistry conditions (pH, background ions, natural organic matter, promotors, and scavengers), the physicochemical characteristics of various graphene/GO-based nanocatalysts, and various operating conditions (voltage and current). Additionally, the reusability/stability of graphene/GO-based nanocatalysts, hybrid systems combined with ozone/ultrasonic/Fenton oxidation, and prospective research areas are briefly described.


Assuntos
Compostos Benzidrílicos , Grafite , Fenóis , Poluentes Químicos da Água , Grafite/química , Compostos Benzidrílicos/química , Catálise , Fenóis/química , Poluentes Químicos da Água/química , Oxirredução , Purificação da Água/métodos , Disruptores Endócrinos/química , Processos Fotoquímicos , Técnicas Eletroquímicas/métodos
4.
J Hazard Mater ; 469: 134072, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522201

RESUMO

Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.

5.
Chemosphere ; 354: 141676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462187

RESUMO

The existence of pollutants, such as toxic organic dye chemicals, in water and wastewater raises concerns as they are inadequately eliminated through conventional water and wastewater treatment methods, including physicochemical and biological processes. Ultrasonic treatment has emerged as an advanced treatment process that has been widely applied to the decomposition of recalcitrant organic contaminants. Ultrasonic treatment has several advantages, including easy operation, sustainability, non-secondary pollutant production, and saving energy. This review examines the elimination of dye chemicals and categorizes them into cationic and anionic dyes based on the existing literature. The objectives include (i) analyzing the primary factors (water quality and ultrasonic conditions) that influence the sonodegradation of dye chemicals and their byproducts during ultrasonication, (ii) assessing the impact of the different sonocatalysts and combined systems (with ozone and ultraviolet) on sonodegradation, and (iii) exploring the characteristics-based removal mechanisms of dyes. In addition, this review proposes areas for future research on ultrasonic treatment of dye chemicals in water and wastewater.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Corantes/química , Ultrassom , Poluentes Químicos da Água/química , Purificação da Água/métodos
6.
Chemosphere ; 349: 140800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040264

RESUMO

Boron nitride (BN) coupled with various conventional and advanced photocatalysts has been demonstrated to exhibit extraordinary activity for photocatalytic degradation because of its unique properties, including a high surface area, constant wide-bandgap semiconducting property, high thermal-oxidation resistance, good hydrogen-adsorption performance, and high chemical/mechanical stability. However, only limited reviews have discussed the application of BN or BN-based nanomaterials as innovative photocatalysts, and it does not cover the recent results and the developments on the application of BN-based nanomaterials for water purification. Herein, we present a complete review of the present findings on the photocatalytic degradation of different contaminants by various BN-based nanomaterials. This review includes the following: (i) the degradation behavior of different BN-based photocatalysts for various contaminants, such as selected dye compounds, pharmaceuticals, personal care products, pesticides, and inorganics; (ii) the stability/reusability of BN-based photocatalysts; and (iii) brief discussion for research areas/future studies on BN-based photocatalysts.


Assuntos
Nanoestruturas , Compostos de Boro , Água , Adsorção
7.
J Hazard Mater ; 458: 131847, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352778

RESUMO

In this study, Ag3PO4 and Fe-based metal-organic frameworks (MOFs)-functionalized three-dimensional (3D) porous gelatin aerogels (Ag/Fe@GMA) were fabricated and used as adsorbents and catalysts for the activation of peroxymonosulfate (PMS) for naproxen (NPX) removal from water. The morphology, crystallinity, surface functional groups, and surface chemical element compositions of the fabricated Ag/Fe@GMA was evaluated using various analytical techniques. Our results showed that as an adsorbent, Ag/Fe@GMA showed a 18.0 % higher NPX adsorption capacity compared with the pristine aerogels. This can be attributed to the well-embedded Ag3PO4 and MOFs, indicating a stronger interaction between functionalized aerogels and NPX. After adsorption, 99.9 % of total NPX removal was achieved within 15 min by activating PMS and effectively generating •OH and •SO4- in water. The PMS/Ag/Fe@GMA aerogel system also showed high removal performance for rhodamine B (99.5 %) and tetracycline (93.7 %). Moreover, the Ag/Fe@GMA aerogels showed excellent reusability to achieve 95.7 % NPX removal efficiency after six times of recycling. This study revealed that the Ag/Fe@GMA aerogels had good potential for PMS activation and NPX removal. In particular, as an alternative to powdery materials, 3D shape of Ag/Fe@GMA with excellent reusability facilitates its application in the treatment of water contaminated with organic contaminants.

8.
J Hazard Mater ; 452: 131197, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989782

RESUMO

The aim of this study was to investigate the effects of hydrophilic sulfur-modified nanoscale zero-valent iron (S-nZVI) as a biocatalyst for denitrification. We found that the denitrifying bacteria Cupriavidus necator (C. necator) promoted Fe corrosion during biocatalytic denitrification, reducing surface passivation and sulfur species leaching from S-nZVI. As a result, S-nZVI exhibited a higher synergistic factor (fsyn = 2.43) for biocatalytic NO3- removal than nanoscale zero-valent iron (nZVI, fsyn = 0.65) at an initial nitrate concentration of 25 mg L-1-N. Based on kinetic profiles, SO42- was the preferred electron acceptor over NO3- when using C. necator and S-nZVI for biocatalytic denitrification. Up-flow column experiments demonstrated that biocatalytic denitrification using S-nZVI achieved a total nitrogen removal capacity of up to 2004 mg L-1 for 127 d. Notably, microbiome taxonomic profiling showed that the addition of S-nZVI to the groundwater promoted the growth of Geobacter, Desulfosporosinus, Streptomyces, and Simplicispira spp in the column experiments. Most of those microbes can reduce sulfate, promote denitrification, and match the batch kinetic profile obtained using C. necator. Our results not only discover the great potential of S-nZVI as a biocatalyst for enhancing denitrification via microbial activation but also provide a deep understanding of the complicated abiotic-biotic interaction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Desnitrificação , Nitratos , Bactérias , Nitrogênio
9.
J Hazard Mater ; 443(Pt A): 130165, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36272372

RESUMO

Tetracycline (TC) antibiotics are widely used in animal husbandry and can cause environmental risk due to its high ecological toxicity and persistence. In this study, cobalt doped/ZnTiO3 (ZTO)/Ti3C2Tx MXene (ZCxTM, x indicates wt% of Co loading) was synthesized and explored to remove TC by adsorption and photocatalysis under visible light irradiation. The as-prepared ZC5TM was characterized using various analytical techniques, and key operating parameters such as solution pH, background ions, and temperature were systematically investigated. Interestingly, ZC5TM (14.9 mg/g) showed excellent adsorption capacity for TC, which was higher than activated carbon (7.7 mg/g), ZTO (4.9 mg/g), ZC3T (5.2 mg/g), ZC5T (5.3 mg/g), MXene (12.1 mg/g), ZTOM (12.5 mg/g), and ZC3TM (12.9 mg/g). The pseudo-second-order kinetics and Langmuir isotherm models well explained the effect of contact time and initial concentrations on the adsorption of TC. The adsorption process was primarily through the electrostatic attraction, surface complexation, and hydrogen bonding. In addition, MXene and Co doped on ZTO served as co-catalyst and reduced recombination rate of photo-generated e--h+ pairs by the intimate interface of its heterojunction. Thus, ZC5TM was highly effective for the photocatalytic degradation of residual TC after adsorption by showing 18% TC degradation rate, compared to 8% and 9% degradation rate for ZTO and MXene, respectively. There results finally support the feasible use of ZC5TM as efficient adsorbent and photocatalyst in removal of TC in wastewater.


Assuntos
Cobalto , Poluentes Químicos da Água , Adsorção , Cobalto/química , Cinética , Titânio , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos/química
10.
Environ Res ; 212(Pt C): 113419, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537499

RESUMO

In this study, strontium ferrite (SF)-incorporated zeolite imidazole framework (ZIF-8) (SFZIF-8) that can simultaneously uptake Pb(II) and tetracycline (TC) in solution was synthesized and characterized. The physicochemical properties of the as-prepared SFZIF-8 were characterized by various functional groups, higher average pore diameter (3.414 nm), and stronger negative charge (-30.5 mV). Adsorption kinetics, isotherms, effect of various water conditions including solution pH and temperature, and reusability were studied to evaluate its adsorption performance. The adsorption capacity of SFZIF-8 was compared with that of commonly used adsorbents (powder and granular activated carbon). SFZIF-8 showed much higher adsorption performance (429.6 mg/g and 433.4 mg/g for Pb(II) and TC, respectively) than powder activated carbon (129.9 mg/g and 142.0 mg/g for Pb(II) and TC, respectively) and granular activated carbon (249.3 mg/g and 263.0 mg/g for Pb(II) and TC, respectively) in Pb(II) and TC binary solutions. The SFZIF-8 adsorption behaviors for the removal of Pb(II) and TC were explained by the pseudo-first-order and Langmuir models from the adsorption kinetics and isotherm experiments, respectively. The regenerated SFZIF-8 exhibited a competitive performance even after the third cycle. These results indicate that Pb(II) and TC can be removed with SFZIF-8 via electrostatic attraction, surface complexation, hydrogen bonding, and π-π interactions. Therefore, by exhibiting effective and efficient adsorption performance, SFZIF-8 nanocomposites can be utilized as alternative and promising adsorbents for the simultaneous removal of both Pb(II) and TC.


Assuntos
Poluentes Químicos da Água , Zeolitas , Adsorção , Antibacterianos , Carvão Vegetal/química , Compostos Férricos , Concentração de Íons de Hidrogênio , Imidazóis , Cinética , Chumbo , Pós , Estrôncio , Tetraciclina , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 436: 129074, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35567810

RESUMO

In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Compostos de Cálcio , Oxirredução , Óxidos/química , Titânio , Águas Residuárias/química
12.
J Hazard Mater ; 424(Pt C): 127652, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775315

RESUMO

As a new approach of creating the photo-exited electron (e-) and hole (h+) mediation zone for highly selective singlet oxygen (1O2) production, the rod-type graphitic carbon nitride (NCN) has been synthesized from the nitric acid-modified melamine followed by the calcination. The NCN exhibited a higher surface area and surface oxygen adsorption ability than bulk graphitic carbon nitride (BCN). The increment of CO and NHx groups on NCN corresponded to e- and h+ mediation groups, respectively, resulting in higher production of 1O2 than BCN. Moreover, those mediation groups on NCN result in higher recombination efficiency and longer e- decay time. As a result, the optimized NCN-0.5 (derived from 0.5 M of nitric acid-modified melamine) displayed 5.8 times higher kinetic rate constant of atrazine (ATZ) removal under UVA-LED irradiation compared to BCN. This study also evaluated the ATZ degradation pathways and toxicity effect of by-products. In addition, continuous flow experiments using NCN-0.5 showed superior ATZ removal performance with a hybrid concept between a slurry photocatalysis and a continuous stirred tank reactor system using actual effluent obtained from a wastewater treatment plant. Thus, this work provides an insight into the strategy for highly selective 1O2 production and the potential for water purification application.

13.
Chemosphere ; 286(Pt 3): 131916, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34416582

RESUMO

Adsorption is an effective method for the removal of inorganic and organic contaminants and has been commonly used as a pretreatment method to improve contaminant removal and control flux during membrane filtration. Over the last two decades, many researchers have reported the use of hybrid systems comprising various adsorbents and different types of membranes, such as nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF) membranes, to remove contaminants from water. However, a comprehensive evaluation of the removal mechanisms and effects of the operating conditions on the transport of contaminants through hybrid systems comprising various adsorbents and NF, UF, or MF membranes has not been performed to date. Therefore, a systematic review of contaminant removal using adsorption-membrane hybrid systems is critical, because the transport of inorganic and organic contaminants via the hybrid systems is considerably affected by the contaminant properties, water quality parameters, and adsorbent/membrane physicochemical properties. Herein, we provide a comprehensive summary of the most recent studies on adsorption-NF/UF/MF membrane systems using various adsorbents and membranes for contaminant removal from water and wastewater and highlight the future research directions to address the current knowledge gap.


Assuntos
Membranas Artificiais , Purificação da Água , Adsorção , Ultrafiltração , Águas Residuárias
14.
J Hazard Mater ; 424(Pt A): 127267, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583162

RESUMO

Novel integration of adsorption followed by catalytic oxidation is expected to be more beneficial for higher Mn(II) removal performance. We prepared self-assembled 3D flower-like Mg(OH)2 coated on granular-sized polyurethane (namely FMHP) via hydrothermal method at 120 °C under a facile synthesis route. The optimized material, FMHP prepared with 7 g MgO and 20 g polyurethane (FMH0.35P), achieved up to 351.2 mg g-1 Mn(II) removal capacity by Langmuir isotherm model. Besides, FMHP exhibited high Mn(II) removal in a wide range of NaCl concentration (0~0.1 M) and pH 2-9. Notably, through consecutive kinetics, BET, XPS, XRD, FESEM, and TEM analyses, it was found that the MnOx layer grows in-situ via ion exchange with Mg(II) on FMHP and further boosts the Mn(II) removal via catalytic oxidation during the Mn(II) removal process. Further, column experiments revealed that the FMH0.35P exhibited superior Mn(II) removal capacities up to 135.9 mg g-1 and highly compatible treatment costs ($0.062 m-3) compared to conventional chemical processes. The granular-sized FMH0.35P prepared by economic precursors and simple synthesis route revealed a high potential for Mn(II) containing water treatment due to its high removal capacities and easy operation.

15.
Chemosphere ; 286(Pt 1): 131574, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315072

RESUMO

Thermal plasma blasting technology has been widely applied for rock cracking. Though, the application for environmental remediation has yet to be reported. Since the delivery of remediation agents into diesel contaminated clayey zones are exceptionally challenging, herein, this study explores the effect of pilot-scale thermal plasma blasting for soil fracturing and concurrently dispersing the Fenton reagent into the diesel contaminated silty soils. Six times plasma blasting with sole H2O2 at 20 kV had the highest degradation of diesel (>97%) with an equilibrium time of 3 h, and the final diesel concentration was below the South Korean regulated health standard (500 mg kg-1). This study highlights plasma blasting able to deliver H2O2 instantaneously and homogeneously into contaminated zone while promoting Fenton reaction synergism (fsyn: 2.04) between H2O2 and ≡Fe surface for effective remediation. Furthermore, the remediation cost (USD 4 metric ton-1) is much lower than most reported in situ technologies.


Assuntos
Recuperação e Remediação Ambiental , Gases em Plasma , Poluentes do Solo , Argila , Peróxido de Hidrogênio , Solo , Poluentes do Solo/análise
16.
Chemosphere ; 290: 133395, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34952026

RESUMO

Contaminants of emerging concerns such as endocrine-disrupting compounds (EDCs) and pharmaceuticals/personal-care products (PPCPs) constitute a problem since they are not completely eliminated by traditional water and wastewater treatment methods. Non-thermal plasma (NTP) is considered as one of the most favorable treatment methods for the removal of organic contaminants in water and wastewater. The degradation of selected EDCs and PPCPs of various classes was reviewed, based on the recent literature, to (i) address the effect of the main NTP treatment parameters (water quality and NTP conditions: pH, initial concentration, temperature, background common ion, NOM, scavenger, gas type/flow rate, discharge/reactor type, input power, and energy efficiency/yield) on the degradation of contaminants and their intermediates, (ii) assess the influences of different catalysts and hybrid systems on degradation, (iii) describe EDC and PPCP degradation along with their properties, and (iv) evaluate mineralization, pathway, and degradation mechanism of selected EDCs and PPCPs for different cases studied. Furthermore, areas of potential research in NTP treatment for the degradation of EDCs and PPCPs in aqueous solutions are recommended. It could be reasonably predicted that this review is valid for developing our understanding of the fundamental scientific principles concerning the catalytic NTP of EDCs and PPCPs, providing helpful and practical references for researchers and designers on the effective removal of EDCs/PPCPs and the optimized operation of catalytic NTP systems.


Assuntos
Cosméticos , Disruptores Endócrinos , Preparações Farmacêuticas , Gases em Plasma , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 426: 128120, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953257

RESUMO

Single and multilayered Ti3C2TX MXene (referred to as SLM and MLM in this study, respectively) was applied as catalysts in the ultrasonic (US) process to treat selected pharmaceutical compounds including diclofenac and verapamil (VRP). Due to solid surface, elemental composition, and functional groups of Ti3C2TX MXene, the free OH• production was increased by 48.8% for the US treatment with SLM and 59.8% for the US treatment with MLM compared with the US-only treatment. Additionally, adsorption affected the performance during the US treatment in the presence of the catalyst. Thus, the US treatment in the presence of Ti3C2TX MXene had an enhanced performance not only because of increased oxidation but also because of adsorption, particularly between positively charged VRP and negatively charged Ti3C2TX MXene. Moreover, although the degradation of the performance was higher for SLM (85.1%) than for MLM (81.8%), by improving the dispersion and reducing the size via sonication, the US treatment in the presence of MLM showed the highest synergy effect. In other words, the US treatment in the presence of MLM showed higher performance than the simple sum of oxidation and adsorption. These findings confirm that the US treatment in the presence of MLM may be a promising technology to treat various pharmaceuticals as a more degradable, strongly reusable, and less toxic process.


Assuntos
Diclofenaco , Titânio , Adsorção , Oxirredução , Verapamil
18.
Biomolecules ; 11(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067472

RESUMO

A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-ß-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.


Assuntos
Injúria Renal Aguda , Antineoplásicos/uso terapêutico , Neoplasias Renais , Proteínas de Neoplasias , Proteínas PrPC , Doenças Priônicas , Insuficiência Renal Crônica , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Fibrose , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia
19.
Chemosphere ; 279: 130524, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134401

RESUMO

This paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.2% sodium hypochlorite (NaOCl) and 3% citric acid (C6H8O7) cleaning was tested with different cleaning frequencies and various chemical cleaning durations at different cross-flow velocities. To avoid severe fouling, the optimal cross-flow velocity was found at 0.18 m/s (0.8 L/min). Moreover, even if higher cross-flow velocity allows higher flux, it could increase fouling risks. For a better membrane regeneration and process productivity, a cleaning of 60 min duration for each chemical cleaning applied every two days was defined as the optimal cleaning strategy. Such conditions allowed the preservation of 75.5% of the initial flux after 96 h of operation. Furthermore, the effect on membrane flux regeneration of DI water flushing, sodium hypochlorite, and citric acid cleaning registered were, 31.52%, 11.95% and 20.65%, respectively. This study revealed that in the MD process treating real wastewater both external and internal fouling are responsible of permeate flux decline due to the accumulation of organic and inorganic matter on the membrane surface as well as within the pores.


Assuntos
Destilação , Purificação da Água , Anaerobiose , Membranas Artificiais , Águas Residuárias
20.
J Hazard Mater ; 417: 125995, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004581

RESUMO

This study utilized a facile and scalable one-pot wet impregnation method for Hg(II) adsorption to prepare sulfur-anchored palm shell waste activated carbon powder (PSAC-S). The experimental results revealed that the sulfur precursors promote the surface charge on the PSAC and enhance Hg(II) removal via the Na2S > Na2S2O4 > CH3CSNH2 sequence. PSAC-S prepared using Na2S had significant Hg(II) sorption efficiencies, achieving a maximum sorption capacity of 136 mg g-1 from the Freundlich model. Compared to PSAC, PSAC-S had an enhancement in Hg(II) sorption behavior for heterogeneous interactions with sulfur. PSAC-S also demonstrated high Hg(II) sorption capacities over a wide range of solution pH, while ionic strength had an insignificant impact on Hg(II) removal efficiencies. Through various spectroscopic analyses, we identified the mechanisms of Hg(II) removal by PSAC-S as electrostatic interactions, Hg-Cl complexation, and precipitation as HgSO4. Moreover, PSAC-S unveiled high adsorption affinity and Hg(II) stability in actual groundwater (even in µg L-1 level). These overall results show the potentials of PSAC-S as an alternative, easily scalable material for in-situ Hg(II) remediation.


Assuntos
Água Subterrânea , Mercúrio , Adsorção , Carvão Vegetal , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA