Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 17(31): e2101729, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165888

RESUMO

Nickel oxide (NiO) offers intrinsic p-type behavior and high thermal and chemical stability, making it promising as a hole transport layer (HTL) material in inverted organic solar cells. However, its use in this application has been rare because of a wettability problem caused by use of water as base solvent and high-temperature annealing requirements. In the present work, an annealing-free solution-processable method for NiO deposition is developed and applied in both conventional and inverted non-fullerene polymer solar cells. To overcome the wettability problem, the typical DI water solvent is replaced with a mixed solvent of DI water and isopropyl alcohol with a small amount of 2-butanol additive. This allows a NiO nanoparticle suspension (s-NiO) to be deposited on a hydrophobic active layer surface. An inverted non-fullerene solar cell based on a blend of p-type polymer PTB7-Th and non-fullerene acceptor IEICO-4F exhibits the high efficiency of 11.23% with an s-NiO HTL, comparable to the efficiency of an inverted solar cell with a MoOx HTL deposited by thermal evaporation. Conventionally structured devices including this s-NiO layer show efficiency comparable to that of a conventional device with a PEDOT:PSS HTL.

2.
Nature ; 592(7854): 381-385, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820983

RESUMO

Metal halide perovskites of the general formula ABX3-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics1-5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6-9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.

3.
Nano Lett ; 21(8): 3473-3479, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851850

RESUMO

To date, the light emitting diode (LED) based halide perovskite was rapidly developed due to the outstanding property of perovskite materials. However, the blue perovskite LEDs based on the bulk halide perovskites have been rarely researched and showed low efficiencies. The bulk blue perovskite LEDs suffered from insufficient coverage on the substrate due to the low solubility of the inorganic Cl sources or damaged by the structural instability with participation of organic cations. Here, we show the new method of fabricating stable inorganic bulk blue perovskite LEDs with the anion exchange approach to avoid use of insoluble Cl precursors. The devices showed nice operational spectral stability at the desired blue emission peak. The bulk perovskite blue LEDs showed a maximum luminance of 1468 and 494 cd m-2 for the 490 and 470 nm emission peaks, respectively.

4.
ACS Nano ; 14(12): 17114-17124, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33284600

RESUMO

Transition metal dichalcogenides (TMDs), due to their fascinating properties, have emerged as potential next-generation semiconducting nanomaterials across diverse fields of applications. When combined with other material systems, precise control of the intrinsic properties of the TMDs plays a vital role in maximizing their performance. Defect-induced atomic doping through introduction of a chalcogen vacancy into the TMDs lattices is known to be a promising strategy for modulating their characteristic properties. As a result, there is a need to develop tunable and scalable synthesis routes to achieve vacancy-modulated TMDs. Herein, we propose a facile liquid-phase ligand exchange approach for scalable, uniform, and vacancy-tunable synthesis of TMDs films. Varying the relative molar ratio of the chalcogen to transition metal precursors enabled the in situ modulation of the chalcogen vacancy concentrations without necessitating additional post-treatments. When employed as the electrocatalyst in the hydrogen evolution reaction (HER), the vacancy-modulated TMDs, exhibiting a synergetic effect on the energy level matching to the reduction potential of water and optimized free energy differences in the HER pathways, showed a significant enhancement in the hydrogen production via the improved charge transfer kinetics and increased active sites. The proposed approach for synthesizing tunable vacancy-modulated TMDs with wafer-scale synthesis capability is, therefore, promising for better practical applications of TMDs.

5.
Nanoscale ; 12(42): 21695-21702, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089840

RESUMO

Though halide perovskite nanocrystal (PeNC) based blue light emitting devices have been improved in the last few years, and the reasons for the improvements have been successfully explained, the origin of the narrow emission spectra of PeNCs have not been studied much. Here, the factors that affect the width of the emission spectra of PeNCs are analyzed with controlled synthesis and surface passivation treatment. The overall spectra are governed by the size of PeNCs; however, the width could be narrowed by surface passivation treatment. The anion passivation effect of the surface passivation improved most of optoelectronic properties, but had less effect on the emission spectra width. The narrower emission spectra of PeNCs are obtained by ligand passivation effect of the surface passivation. Light emitting devices with enhanced optoelectronic properties are successfully fabricated and narrow (0.094 eV, 16.72 nm) blue electroluminescence emission spectra (∼470 nm) are obtained.

6.
Sci Rep ; 10(1): 18055, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093600

RESUMO

Significant aggregation between ZnO nanoparticles (ZnO NPs) dispersed in polar and nonpolar solvents hinders the formation of high quality thin film for the device application and impedes their excellent electron transporting ability. Herein a bifunctional coordination complex, titanium diisopropoxide bis(acetylacetonate) (Ti(acac)2) is employed as efficient stabilizer to improve colloidal stability of ZnO NPs. Acetylacetonate functionalized ZnO exhibited long-term stability and maintained its superior optical and electrical properties for months aging under ambient atmospheric condition. The functionalized ZnO NPs were then incorporated into polymer solar cells with conventional structure as n-type buffer layer. The devices exhibited nearly identical power conversion efficiency regardless of the use of fresh and old (2 months aged) NPs. Our approach provides a simple and efficient route to boost colloidal stability of ZnO NPs in both polar and nonpolar solvents, which could enable structure-independent intense studies for efficient organic and hybrid optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 12(31): 35740-35747, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32633483

RESUMO

All-inorganic perovskite nanocrystals (PeNCs), CsPbX3 (X = Cl, Br, or I), have been considered as one of the prospective emissive materials for display applications, which showed superior photoluminescence quantum yield and high color purity with narrow spectral line width. Recently, high-performance green and red perovskite light-emitting diodes (PeLEDs) were introduced; however, the efficiency of blue PeLEDs still lagged owing to PeNCs' deep HOMO energy level (∼6.0 eV), which is in discord with the adjacent organic interlayer. In this work, we demonstrated an interfacial engineering strategy with conjugated polyelectrolytes, functionalized PFN (poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]) with halide anions, between the hole injection layer and PeNCs. By introducing PFN-X (X = Cl, Br, or I), they exhibit well-balanced charge carriers and resultant effective radiative recombination in the PeNC layer with reduced hole injection barrier and electron blocking behavior. Among them, in particular, the PFN-Cl-treated PeLEDs display a maximum external quantum efficiency of 1.34% at 470 nm electroluminescence emission with enhanced spectral operating stability.

8.
ACS Appl Mater Interfaces ; 12(28): 31582-31590, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564589

RESUMO

Inorganic lead halide perovskite nanocrystals (PeNCs) have intensively drawn attention as efficient light-emitting materials for optoelectronic applications due to their fine optoelectronic properties with a high photoluminescence quantum yield and easily tunable saturated emission color. However, the poor stability of the red-emitting PeNCs has become an obstacle because of the uncontrollable iodine substitution from the PeNCs due to weak Pb-I bonding. In this work, we have demonstrated a ligand-mediated post-treatment (LMPT) method using a halide ion-pair ligand, tridodecylmethyl ammonium iodide (TrDAI), for the air stable and high-quality red-emitting PeNCs. Through the LMPT method, the optoelectronic properties of red-emitting PeNCs are dramatically improved resulting in a PLQY of 88.7% at 637 ± 2 nm emission with an increased carrier lifetime from 20.77 to 31.52 ns. We achieve highly efficient red perovskite light-emitting diodes exhibiting a maximum current efficiency of 7.69 cd A-1 and an external quantum efficiency of 6.36% at 637 ± 2 nm electroluminescence emission with a sharp full-width at half maximum of 31 nm.

9.
Opt Express ; 27(18): 25293-25304, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510403

RESUMO

Light absorption in semiconductors is a fundamental problem that has broad impact on a wide range of fields. However, it is intrinsically limited by the bandgap energy of the semiconductor. Herein, we study the enhancement of sub-bandgap light absorption in inorganic-organic hybrid perovskite semiconductor films via critical coupling. This is achieved at large incidence angles by balancing radiative and nonradiative decay rates in a planar multilayer structure. We found that a very small loss in the semiconductor layer can result in substantial light absorption. This simple but general method can be used to enhance the optical and optoelectronic responses of semiconductors below the bandgap energy.

10.
ACS Appl Mater Interfaces ; 11(26): 23401-23409, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252491

RESUMO

CsPbX3 (X = I, Br, Cl) perovskite nanocrystals (NCs) have recently emerged as emitting materials for optoelectronic and display applications owing to their easily tunable emissions, high photoluminescence quantum yield (PLQY), and vivid color purity (full width at half maximum of approximately 20 nm). However, the lagging quantum yields of blue-emitting perovskite NCs have resulted in low efficiency compared to green or red perovskite light-emitting diodes (PeLEDs); moreover, the long insulating ligands (such as oleylamine and oleic acid) inhibit charge carrier injection. In this study, we demonstrated a facile ligand-mediated post-treatment (LMPT) method for high-quality perovskite NCs with changing optical properties to allow fine-tuning of the target emission wavelength. This method involves the use of a mixed halide ion-pair ligand, di-dodecyl dimethyl ammonium bromide, and chloride, which can induce a reconstruction through a self-anion exchange. Using the LMPT method, the PLQY of the surface-passivated blue-emitting NCs was dramatically enhanced to over 70% within the 485 nm blue emission region and 50% within the 467 nm deep-blue emission region. Through this treatment, we achieved highly efficient blue-PeLED maximum external quantum efficiencies of 0.44 and 0.86% within the 470 and 480 ± 2 nm electroluminescence emission regions, respectively.

11.
ACS Appl Mater Interfaces ; 11(7): 7208-7215, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30698016

RESUMO

In the field of organic solar cells, it has been generally accepted until recently that a difference in band energies of at least 0.3 eV between the highest occupied molecular orbital (HOMO) level of the donor and the HOMO of the acceptor is required to provide adequate driving force for efficient photoinduced hole transfer due to the large binding energy of excitons in organic materials. In this work, we investigate polymeric donor:non-fullerene acceptor junctions in binary and ternary blend polymer solar cells, which exhibit efficient photoinduced hole transfer despite negligible HOMO offset and demonstrate that hole transfer in this system is dependent on morphology. The morphology of the organic blend was gradually tuned by controlling the amount of ITIC and PC70BM. High external quantum efficiency was achieved at long wavelengths, despite ITIC-to-PC70BM ratio of 1:9, which indicates efficient photoinduced hole transfer from ITIC to the donor despite an undesirable HOMO energy offset. Transient absorption spectra further confirm that hole transfer from ITIC to the donor becomes more efficient upon optimizing the morphology of the ternary blend compared to that of donor:ITIC binary blend.

12.
Adv Mater ; 30(14): e1706034, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29450928

RESUMO

Conjugated polyelectrolytes (CPEs) with π-delocalized main backbones and ionic pendant groups are intensively studied as interfacial layers for efficient polymer-based optoelectronic devices (POEDs) because they facilitate facile control of charge injection/extraction barriers. Here, a simple and effective method of performing precise interfacial energy level adjustment is presented by employing CPEs with different thicknesses and various ion densities under electric poling to realize efficient charge injection/extraction of POEDs. The effects of the CPE ion densities and electric (positive or negative) poling on the energy level tuning process are investigated by measuring the open-circuit voltages and current densities of devices with the structure indium tin oxide/zinc oxide/CPE/organic active layer/molybdenum oxide/gold while changing the CPE film thickness. The performances of inverted polymer light-emitting diodes and inverted polymer solar cells are remarkably improved by precisely controlling the interfacial energy level matching using optimum CPE conditions.

13.
RSC Adv ; 8(43): 24110-24115, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539189

RESUMO

We herein demonstrate n-i-p-type planar heterojunction perovskite solar cells employing spin-coated ZnO nanoparticles modified with various alkali metal carbonates including Li2CO3, Na2CO3, K2CO3 and Cs2CO3, which can tune the energy band structure of ZnO ETLs. Since these metal carbonates doped on ZnO ETLs lead to deeper conduction bands in the ZnO ETLs, electrons are easily transported from the perovskite active layer to the cathode electrode. The power conversion efficiency of about 27% is improved due to the incorporation of alkali carbonates in ETLs. As alternatives to TiO2 and n-type metal oxides, electron transport materials consisting of doped ZnO nanoparticles are viable ETLs for efficient n-i-p planar heterojunction solar cells, and they can be used on flexible substrates via roll-to-roll processing.

14.
RSC Adv ; 8(69): 39777-39783, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35558017

RESUMO

The ability to control the morphologies of active layers is a critical factor in the successful development of polymer solar cells (PSCs), and solvent processing additives offer a simple and effective way to accomplish this. In particular, diphenyl ether (DPE) is one of the most effective solvent additives but analogous additives based on this structure have not yet been extensively investigated. In this work, we have fabricated PSCs and investigated photovoltaic device characteristics using the series of non-halogenated, diphenyl-chalcogen solvent additives; DPE, diphenyl sulfide (DPS) and diphenyl selenide (DPSe). DPS devices showed optimal power conversion efficiencies (PCEs) of up to 9.08%, and DPE devices also showed similarly high PCEs of up to 8.85%. In contrast, DPSe devices showed relatively low PCEs (5.45% at best) which we attribute to significant surface recombination and high series resistance, which led to limited open-circuit voltage (V OC). In the case of DPS, fast, field-independent photocurrent saturation with negligible bimolecular recombination led to efficient charge separation and collection, which resulted in the highest PCEs. Additionally, using 1,2,4-trimethylbenzene and DPS as an entirely non-halogenated solvent/additive system, we successfully demonstrated device fabrication with comparably high PCEs of up to 8.4%. This work elucidates the effects of diphenyl-based solvent additives in PSCs and suggests a great potential of DPS as an effective non-halogenated solvent additive.

15.
Nano Lett ; 17(10): 6385-6390, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895740

RESUMO

Edged-selectively fluorine (F) functionalized graphene nanoplatelets (EFGnPs-F) with a p-i-n structure of perovskite solar cells achieved 82% stability relative to initial performance over 30 days of air exposure without encapsulation. The enhanced stability stems from F-substitution on EFGnPs; fluorocarbons such as polytetrafluoroethylene are well-known for their superhydrophobic properties and being impervious to chemical degradation. These hydrophobic moieties tightly protect perovskite layers from air degradation. To directly compare the effect of similar hydrophilic graphene layers, edge-selectively hydrogen functionalized graphene nanoplatelet (EFGnPs-H) treated devices were tested under the same conditions. Like the pristine MAPbI3 perovskite devices, EFGnPs-H treated devices were completely degraded after 10 days. The hydrophobic properties of EFGnPs-F were characterized by contact angle measurement. The test results showed great water repellency compared to pristine perovskite films or EFGnPs-H coated films. This resulted in highly air-stable p-i-n perovskite solar cells.

16.
Sci Rep ; 6: 36608, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827402

RESUMO

We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

18.
Nano Lett ; 15(11): 7691-6, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26509283

RESUMO

The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA