Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38945096

RESUMO

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

2.
Metabolites ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887424

RESUMO

Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-ß,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.

3.
Plants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202340

RESUMO

Stachys scardica Griseb. is a Balkan endemic species listed in The Red Data Book of Bulgaria with the conservation status "endangered". Successful micropropagation was achieved on MS medium supplemented with 1.5 mg/L benzyladenine (BA), followed by a subsequent ex vitro adaptation in an experimental field resulting in 92% regenerated plants. Using nuclear magnetic resonance (NMR), phenylethanoid glycosides (verbascoside, leucosceptoside A), phenolic acids (chlorogenic acid), iridoids (allobetonicoside and 8-OAc-harpagide), and alkaloids (trigonelline) were identified, characteristic of plants belonging to the genus Stachys. High antioxidant and radical scavenging activities were observed in both in situ and ex vitro acclimated S. scardica plants, correlating with the reported high concentrations of total phenols and flavonoids in these variants. Ex vitro adapted plants also exhibited a well-defined anti-inflammatory potential, demonstrating high inhibitory activity against the complement system. Employing a disk diffusion method, a 100% inhibition effect was achieved compared to positive antibiotic controls against Staphylococcus epidermidis and Propionibacterium acnes, with moderate activity against Bacillus cereus. The induced in vitro and ex vitro model systems can enable the conservation of S. scardica in nature and offer future opportunities for the targeted biosynthesis of valuable secondary metabolites, with potential applications in the pharmaceutical and cosmetic industries.

4.
Plants (Basel) ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432909

RESUMO

Ludisia discolor is commonly known as a jewel orchid due to its variegated leaves. Easy maintenance of the orchid allows it to be used as a test system for various fertilizers and nutrient sources, including aquaponic water (AW). First, we applied DNA barcoding to assess the taxonomic identity of this terrestrial orchid and to construct phylogenetic trees. Next, the vegetative organs (leaf, stem, and root) were compared in terms of the level of metabolites (reducing sugars, proteins, anthocyanins, plastid pigments, phenolics, and antioxidant activity) and nutrient elements (carbon, nitrogen, sodium, and potassium), which highlighted the leaves as most functionally active organ. Subsequently, AW was used as a natural source of fish-derived nutrients, and the orchid growth was tested in hydroponics, in irrigated soil, and in an aquaponic system. Plant physiological status was evaluated by analyzing leaf anatomy and measuring chlorophyll content and chlorophyll fluorescence parameters. These results provided evidence of the beneficial effects of AW on the jewel orchid, including increased leaf formation, enhanced chlorophyll content and photosystems' productivity, and stimulated and prolonged flowering. The information acquired in the present study could be used in addressing additional aspects of the growth and development of the jewel orchid, which is also known for its medicinal value.

5.
Front Plant Sci ; 13: 866777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651766

RESUMO

Nepeta nuda (catmint; Lamiaceae) is a perennial medicinal plant with a wide geographic distribution in Europe and Asia. This study first characterized the taxonomic position of N. nuda using DNA barcoding technology. Since medicinal plants are rich in secondary metabolites contributing to their adaptive immune response, we explored the N. nuda metabolic adjustment operating under variable environments. Through comparative analysis of wild-grown and in vitro cultivated plants, we assessed the change in phenolic and iridoid compounds, and the associated immune activities. The wild-grown plants from different Bulgarian locations contained variable amounts of phenolic compounds manifested by a general increase in flowers, as compared to leaves, while a strong reduction was observed in the in vitro plants. A similar trend was noted for the antioxidant and anti-herpesvirus activity of the extracts. The antimicrobial potential, however, was very similar, regardless the growth conditions. Analysis of the N. nuda extracts led to identification of 63 compounds including phenolic acids and derivatives, flavonoids, and iridoids. Quantification of the content of 21 target compounds indicated their general reduction in the extracts from in vitro plants, and only the ferulic acid (FA) was specifically increased. Cultivation of in vitro plants under different light quality and intensity indicated that these variable light conditions altered the content of bioactive compounds, such as aesculin, FA, rosmarinic acid, cirsimaritin, naringenin, rutin, isoquercetin, epideoxyloganic acid, chlorogenic acid. Thus, this study generated novel information on the regulation of N. nuda productivity using light and other cultivation conditions, which could be exploited for biotechnological purposes.

6.
Metabolites ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323694

RESUMO

Stachys thracica Davidov is a Balkan endemic species distributed in Bulgaria, Greece, and Turkey. In Bulgaria, it is classified as "rare" and is under the protection of the Bulgarian biodiversity law. The aim of our study was to develop an efficient protocol for ex situ conservation of S. thracica and to perform comparative NMR-based metabolite profiling and bioactivity assays of extracts from in situ grown, in vitro cultivated, and ex vitro acclimated plants. Micropropagation of S. thracica was achieved by in vitro cultivation of mono-nodal segments on basal MS medium. Ex vitro adaptation was accomplished in the experimental field with 83% survival while conserved genetic identity between in vitro and ex vitro plants as shown by the overall sequence-related amplified polymorphism marker patterns was established. Verbascoside, chlorogenic acid, and trigonelline appeared the main secondary metabolites in in situ, in vitro cultivated, and ex vitro acclimated S. thracica. High total phenolic and flavonoid content as well as antioxidant and radical scavenging activity were observed in in situ and ex vitro plants. Further, the anti-inflammatory activity of S. thracica was tested by hemolytic assay and a high inhibition of the complement system was observed. Initiated in vitro and ex vitro cultures offer an effective tool for the management and better exploitation of the Stachys secondary metabolism and the selection of lines with high content of bioactive molecules and nutraceuticals.

7.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641432

RESUMO

Micropropagation of rare Veronica caucasica M. Bieb. was achieved by successful in vitro cultivation of mono-nodal segments on MS medium supplemented with 1.0 mg L-1 6-benzylaminopurine (BA) and then transferring the regenerated plants on hormone free basal MS medium for root development. In vitro multiplicated plants were successively acclimated in a growth chamber and a greenhouse with 92% survival. The number of plastid pigments and the total phenolics content in in vitro cultivated and ex vitro adapted plants were unchanged, and no accumulation of reactive oxygen species (ROS) was detected by staining with 3-3'-diaminobenzidine (DAB) and 2',7'-dichlorofluorescein diacetate (DCF-DA). Nuclear Magnetic Resonance (NMR) fingerprinting allowed for the identification of the major alterations in metabolome of V. caucasica plants during the process of ex situ conservation. Iridoid glucosides such as verproside, aucubin and catalpol were characteristic for in vitro cultivated plants, while in ex vitro acclimated plants phenolic acid-protocatechuic acid and caffeic acid appeared dominant. The successful initiation of in vitro and ex vitro cultures is an alternative biotechnological approach for the preservation of V. caucasica and would allow for further studies of the biosynthetic potential of the species and the selection of lines with a high content of pharmaceutically valuable molecules and nutraceuticals.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Fenóis/análise , Veronica/crescimento & desenvolvimento , Veronica/metabolismo , Técnicas In Vitro , Pigmentos Biológicos/metabolismo , Plastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Crit Rev Biotechnol ; 40(4): 443-458, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32178548

RESUMO

For centuries plants have been intensively utilized as reliable sources of food, flavoring, agrochemical and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to climate change and agriculture. Plant biotechnology offers a sustainable method for the bioproduction of plant secondary metabolites using plant in vitro systems. The unique structural features of plant-derived secondary metabolites, such as their safety profile, multi-target spectrum and "metabolite likeness," have led to the establishment of many plant-derived drugs, comprising approximately a quarter of all drugs approved by the Food and Drug Administration and/or European Medicinal Agency. However, there are still many challenges to overcome to enhance the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant secondary metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this review, we present an integrated overview of the possible avenues for enhancing the biosynthesis of high-value marketable molecules produced by plant in vitro systems. These include metabolic engineering and CRISPR/Cas9 technology for the regulation of plant metabolism through overexpression/repression of single or multiple structural genes or transcriptional factors. The use of NMR-based metabolomics for monitoring metabolite concentrations and additionally as a tool to study the dynamics of plant cell metabolism and nutritional management is discussed here. Different types of bioreactor systems, their modification and optimal process parameters for the lab- or industrial-scale production of plant secondary metabolites are specified.


Assuntos
Reatores Biológicos , Engenharia Metabólica/métodos , Células Vegetais/metabolismo , Metabolismo Secundário , Sistemas CRISPR-Cas , Edição de Genes , Plantas/genética , Plantas/metabolismo
9.
Methods Mol Biol ; 1815: 457-474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981142

RESUMO

Hairy root (HR) culture is considered as "green factory" for mass production of bioactive molecules with pharmaceutical relevance. As such, HR culture has an immense potential as a valuable platform to elucidate biosynthetic pathways and physiological processes, generate recombinant therapeutic proteins, assist molecular breeding, and enhance phytoremediation efforts. However, some plant species appear recalcitrant to the classical Agrobacterium rhizogenes transformation techniques. Sonication-assisted Agrobacterium-mediated transformation (SAArT) is a highly effective method to deliver bacteria to target plant tissues that includes exposure of the explants to short periods of ultrasound in the presence of the bacteria.Nuclear magnetic resonance (NMR)-based metabolomics is one of the most powerful and suitable platforms for identifying and obtaining structural information on a wide range of compounds with a high analytical precision. In terms of plant science, NMR metabolomics is used to determine the phytochemical variations of medicinal plants or commercial cultivars in certain environments and conditions, including biotic stress and plant biotic interaction, structural determination of natural products, quality control of herbal drugs or dietary supplements, and comparison of metabolite differences between plants and their respective in vitro cultures.In this chapter, we attempt to summarize our knowledge and expertise in induction of hairy roots from rare and recalcitrant plant species by SAArT technique and further methodology for extraction of secondary metabolites of moderate to high polarity and their identification by using NMR-based metabolomics.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Raízes de Plantas/genética , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , Agrobacterium/metabolismo , Análise de Dados , Metaboloma , Análise Multivariada , Brotos de Planta/fisiologia , Sementes/fisiologia , Sonicação
10.
Nat Prod Commun ; 12(2): 291-292, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30428233

RESUMO

The present study reports the chemical composition of headspace volatiles (HS) and acetone extracts of the endemic Bulgarian species Achillea thracica Velen. from its natural habitat (N), in vitro propagated (IN) and ex vitro established (EX) plants. Additionally, acetone extracts were tested by a disk diffusion method for antibacterial activity. Irregular monoterpenes were the most abundant HS volatile constituents, while 0,0-dimethyl quercetin was the most abundant flavonoid in the acetone extracts. The secondary metabolites of A. thracica grown in its natural habitat (N), propagated in vitro (IN) and ex vitro established (EX) showed that the qualitative composition is mutually similar, but there are differences in the quantitative composition. Considering antibacterial activity, IN and EX samples showed moderate activity against Pseudomonas aeruginosa and Escherichia coli.


Assuntos
Achillea/química , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Achillea/crescimento & desenvolvimento , Achillea/metabolismo , Bulgária , Ecossistema , Flavonoides/análise , Extratos Vegetais/análise
11.
Biotechnol Lett ; 38(9): 1621-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27259724

RESUMO

OBJECTIVES: To develop a protocol to transform Verbascum eriophorum and to study the metabolic differences between mother plants and hairy root culture by applying NMR and processing the datasets with chemometric tools. RESULTS: Verbascum eriophorum is a rare species with restricted distribution, which is poorly studied. Agrobacterium rhizogenes-mediated genetic transformation of V. eriophorum and hairy root culture induction are reported for the first time. To determine metabolic alterations, V. eriophorum mother plants and relevant hairy root culture were subjected to comprehensive metabolomic analyses, using NMR (1D and 2D). Metabolomics data, processed using chemometric tools (and principal component analysis in particular) allowed exploration of V. eriophorum metabolome and have enabled identification of verbascoside (by means of 2D-TOCSY NMR) as the most abundant compound in hairy root culture. CONCLUSION: Metabolomics data contribute to the elucidation of metabolic alterations after T-DNA transfer to the host V. eriophorum genome and the development of hairy root culture for sustainable bioproduction of high value verbascoside.


Assuntos
Metabolômica/métodos , Plantas Geneticamente Modificadas/metabolismo , Verbascum/metabolismo , Iridoides/metabolismo , Espectroscopia de Ressonância Magnética , Plantas Geneticamente Modificadas/genética , Verbascum/genética
12.
Biotechnol Biotechnol Equip ; 29(1): 181-188, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019631

RESUMO

Lamium album L. is a perennial herb widely used in folk medicine. It possesses a wide spectrum of therapeutic activities (anti-inflammatory, astringent, antiseptic, antibiotic, antispasmodic, antioxidant and anti-proliferative). Preservation of medicinal plant could be done by in vitro propagation to avoid depletion from their natural habitat. It is important to know whether extracts from L. album plants grown in vitro possess similar properties as extracts from plants grown in vivo. For these reasons, it is important to examine changes in the composition of secondary metabolites during in vitro cultivation of the plant and how they affect the biological activity. We used A549 human cancer cell line and normal kidney epithelial cells MDCKII (Madin-Darby canine kidney cells II) as controls in assessing the anti-cancer effect of plant extracts. To elucidate changes in some key functional characteristics, adhesion test, MTT (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide), transepithelial resistance (TER), immunofluorescence staining and trypan blue exclusion test were performed. Methanol and chloroform extracts of in vivo and in vitro propagated plants affected differently cancerous and non-cancerous cells. The most pronounced differences were observed in the morphological analysis and in the cell adhesive properties. We also detected suppressed epithelial transmembrane electrical resistance of MDCK II cells, by treatment with plant extracts, compared to non-treated MDCK II cells. A549 cells did not polarize under the same conditions. Altered organization of actin filaments in both cell types were noticed suggesting that extracts from L. album L. change TER and actin filaments, and somehow may block cell mechanisms, leading to the polarization of MDCK II cells.

13.
Biotechnol Biotechnol Equip ; 28(5): 863-870, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26740777

RESUMO

Antioxidative activity of two in vitro cultivated Hypericum species - H. rumeliacum Boiss. and H. tetrapterum Fr. - was estimated after cryopreservation. Both species were successfully regenerated after a cryopreservation procedure performed by the vitrification method. H. tetrapterum did not manifest any significant oxidative stress-induced changes caused by low-temperature treatment. Conversely, a decrease in green pigments' content of H. rumeliacum was measured, particularly pronounced in chlorophyll b, which was accompanied by an increase of carotenoids in the regenerated plants. A strong increase of malone dialdehyde and H2O2 levels in H. rumeliacum tissues was detected. Superoxide dismutase activity was enhanced by 170%, as well as the catalase activity, which was 220% above the control. The same trend was observed in H. tetrapterum, although less pronounced - 143% increase of superoxide dismutase and 112% of catalase. Cryopreservation did not influence the phenol content in the examined plants, but it led to an increase of flavonoid content, especially in H. tetrapterum, by 237%. Total antioxidant activity in regenerated H. tetrapterum varied around the control level, but it was increased in H. rumeliacum. The free proline content in H. tetrapterum remained almost unaffected after freezing, as opposed to H. rumeliacum, where a strong increase of proline content (208% above the control) occurred. An electrolyte leakage from the cells of H. rumeliacum regenerated after cryopreservation was also registered, albeit not significant.

14.
Ann Bot ; 111(2): 191-205, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23250917

RESUMO

BACKGROUND AND AIMS: Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. METHODS: Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. KEY RESULTS: MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. CONCLUSIONS: In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of the cells, algal PCD may take different forms and proceed through different pathways.


Assuntos
Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/fisiologia , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Vespas/química , Proteínas de Algas/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Degradação Necrótica do DNA/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Necrose , Fenótipo , Transdução de Sinais/efeitos dos fármacos
15.
Cell Biol Int ; 34(3): 301-8, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-19947911

RESUMO

This work demonstrates a contribution of ethylene and NO (nitric oxide) in MP (mastoparan)-induced cell death in the green algae Chlamydomonas reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of PCD (programmed cell death). A pharmacological approach involving combined treatments with MP and ethylene- and NO-interacting compounds indicated the requirement of trace amounts of both ethylene and NO in MP-induced cell death. By employing a carbon dioxide laser-based photoacoustic detector to measure ethylene and a QCL (quantum cascade laser)-based spectrometer for NO detection, simultaneous increases in the production of both ethylene and NO were observed following MP application. Our results show a tight regulation of the levels of both signalling molecules in which ethylene stimulates NO production and NO stimulates ethylene production. This suggests that, in conjunction with the elicitor, NO and ethylene cooperate and act synchronously in the mediation of MP-induced PCD in C. reinhardtii. To the best of our knowledge, this is the first report on the functional significance of ethylene and NO in MP-induced cell death.


Assuntos
Apoptose , Chlamydomonas reinhardtii/metabolismo , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Etilenos/análise , Peptídeos e Proteínas de Sinalização Intercelular , Lasers de Gás , Lasers Semicondutores , Óxido Nítrico/análise , Peptídeos/toxicidade , Venenos de Vespas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA