Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 27: 104546, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673576

RESUMO

Oryza sativa L. 'Takanari' is one of the most productive indica cultivars [1,2]. Reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between 'Koshihikari' and 'Takanari' are useful tools for the detection and precise mapping of target quantitative trait loci (QTL) in 'Takanari'. Although the available Os-Nipponbare-Reference-IRGSP-1.0 reference genome is available and useful for evaluating genetic diversity among japonica cultivars, it is not always useful for evaluating genetic diversity harbored by indica cultivars such as 'Takanari'. To reveal sequence variants in 'Takanari' and to exploit these variants in rice breeding programs, the whole genome of 'Takanari' was sequenced using a combination of Illumina HiSeq X Ten (20,983,495 reads and %GC 43) and PacBio (2,847,220 high-quality subreads). NGS data obtained have been deposited in the DNA Data Bank of Japan (DDBJ) under accession number DRA007557.

2.
PLoS One ; 13(11): e0207627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458025

RESUMO

Grain-filling ability is one of the factors that controls grain yield in rice (Oryza sativa L.). We developed a method for describing grain weight distribution, which is the probability density function of single grain weight in a panicle, using 128 Japanese rice varieties. With this method, we quantitively analyzed genotypic differences in grain-filling ability and used the grain weight distribution parameters for genomic prediction subject to genetic improvement in grain yield in rice. The novel description method could represent the observed grain weight distribution with five genotype-specific parameters of a mixture of two gamma distributions. The estimated genotype-specific parameters representing the proportion of filled grains had applicability to explain the grain filling ability of genotypes comparable to that of sink-filling rate and the conventionally measured proportion of filled grains, which suggested the efficiency and flexibility of grain weight distribution parameters to handle several genotypes. We revealed that perfectly filled grains have to be prioritized over partially filled grains for the optimum allocation of the source of yield in a panicle, from the analysis for obtaining an ideal shape of grain weight distribution. We conducted genomic prediction of grain weight distribution considering five genotype-specific parameters of the distribution as phenotypes relating to grain filling ability. The proportion of filled grains, average weight of filled grains, and variance of filled grain weight, which were considered to control grain yield to a certain degree, were predicted with accuracies of 0.30, 0.28, and 0.53, respectively. The proposed description method of grain weight distribution facilitated not only the investigation of the optimum allocation of nutrients in a panicle for realizing high grain-filling ability, but also allowed genomic selection of grain weight distribution.


Assuntos
Oryza/genética , Sementes/genética , Análise de Sequência de DNA/métodos , Algoritmos , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Japão , Fenótipo
3.
Sci Rep ; 7(1): 14858, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093514

RESUMO

The CO2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO2] (E-[CO2]) by comparison to free-air CO2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO2] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO2] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO2] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO2] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO2] × N interactions is necessary to better evaluate management practices under climate change.


Assuntos
Dióxido de Carbono/farmacologia , Oryza/crescimento & desenvolvimento , Mudança Climática , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Folhas de Planta/anatomia & histologia
4.
PLoS One ; 10(3): e0118114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774909

RESUMO

We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety 'IR64' was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = -0.32 to EF =0.70 (EF is modelling efficiency). The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments) and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.


Assuntos
Mudança Climática , Modelos Teóricos , Oryza/crescimento & desenvolvimento , Simulação por Computador , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Senegal , Temperatura
5.
Glob Chang Biol ; 21(3): 1328-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25294087

RESUMO

Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2 ]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2 ] and temperature.


Assuntos
Agricultura , Clima , Modelos Teóricos , Oryza/crescimento & desenvolvimento , Ásia , Abastecimento de Alimentos , Sensibilidade e Especificidade , Incerteza
6.
Ann Bot ; 99(2): 265-73, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17204541

RESUMO

BACKGROUNDS AND AIMS: Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. METHODS: Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. KEY RESULTS: Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.


Assuntos
Modelos Biológicos , Nitrogênio/metabolismo , Oryza/citologia , Oryza/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Condutividade Elétrica , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA